I B.Tech (CSE) COURSE STRUCTURE (R23)

1 SEMESTER

S. No	Subject Code	SUBJECT	Cat. Code	INTERN AL MARKS	EXTERN AL MARKS	TOTAL MARK S	L	Т	P	CR EDI TS
1		Communicative English	BS&H	30	70	100	2	0	0	2
2		Chemistry	BS&H	30	70	100	3	0	0	3
3		Linear Algebra & Calculus	BS&H	30	70	100	3	0	0	3
4		Basic Civil & Mechanical Engineering	ES	30	70	100	3	0	0	3
5		Introduction to Programming	ES	30	70	100	3	0	0	3
6		Communicative English Lab	BS&H	30	70	100	0	0	2	1
7		Chemistry Lab	BS&H	30	70	100	0	0	2	1
8		Engineering Workshop	ES	30	70	100	0	0	3	1.5
9		Computer Programming Lab	ES	30	70	100	0	0	3	1.5
10		Health and wellness, Yoga and Sports	BS&H				-	1	1	0.5
		Total					14	0	11	19.5

II SEMESTER

S.N o.	Subject Code	SUBJECT	Cat.Code	INTERNA L MARKS	EXTERNA L MARKS	TOTAL MARKS	L	Т	P	CR EDI TS
1		Engineering Physics	BS& H	30	70	100	3		0	3
2		Differential Equations & Vector Calculus	BS&H	30	70	100	3		0	3
3		Basic Electrical and Electronics Engineering	ES	30	70	100	3		0	3
4		Engineering Graphics	ES	30	70	100	1		4	3
5		IT Workshop	ES	30	70	100	0		2	1
6		Data Structures	PC	30	70	100	3		0	3
7		Engineering Physics Lab	BS&H	30	70	100	0		2	1
8		Electrical and Electronics Engineering Workshop	ES	30	70	100	0		3	1.5
9		Data Structures Lab	PC	30	70	100	0		3	1.5
10		NSS/ Community Service					-		1	0.5
	r	Total					13	0	15	20.5

I B.TECH SEMISTER-I

S. No	Subject Code	SUBJECT	Cat. Code	INTERN AL MARKS	EXTERN AL MARKS	TOTAL MARK S	L	Т	P	CR EDI TS
1		Communicative English	BS&H	30	70	100	2	0	0	2
2		Chemistry	BS&H	30	70	100	3	0	0	3
3		Linear Algebra & Calculus	BS&H	30	70	100	3	0	0	3
4		Basic Civil & Mechanical Engineering	ES	30	70	100	3	0	0	3
5		Introduction to Programming	ES	30	70	100	3	0	0	3
6		Communicative English Lab	BS&H	30	70	100	0	0	2	1
7		Chemistry Lab	BS&H	30	70	100	0	0	2	1
8		Engineering Workshop	ES	30	70	100	0	0	3	1.5
9		Computer Programming Lab	ES	30	70	100	0	0	3	1.5
10		Health and wellness, Yoga and Sports	BS&H				-	1	1	0.5
		Total	-	_			14	0	11	19.5

I SEMESTER SUBCODE:	2	-	-	30	70 NICATIVE	100 ENGLISH	2
I B.TECH	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS

COURSE OBJECTIVES:

The main objective of introducing this course, *Communicative English*, is to facilitate effective listening, Reading, Speaking and Writing skills among the students. It enhances the same in their comprehending abilities, oral presentations, reporting useful information and providing knowledge of grammatical structures and vocabulary. This course helps the students to make them effective in speaking and writing skills and to make them industry ready.

COURSE OUTCOMES:

At the end of the course, the students will be able to:

CO1: Understand the context, topic, and pieces of specific information from social or Transactional dialogues.

CO2: Apply grammatical structures to formulate sentences and correct word forms.

CO3: Analyze discourse markers to speak clearly on a specific topic in informal discussions.

CO4: Evaluate reading / listening texts and to write summaries based on global comprehension of these texts.

CO5: Create a coherent paragraph, essay, and resume.

SYLLABUS:

UNIT-I

Lesson: HUMAN VALUES: Gift of Magi (Short Story)

Listening: Identifying the topic, the context and specific pieces of information by listening

to short audio texts and answering a series of questions.

Speaking: Asking and answering general questions on familiar topics such as home,

family, work, studies and interests; introducing oneself and others.

Reading: Skimming to get the main idea of a text; scanning to look for specific pieces of

information.

Writing: Mechanics of Writing-Capitalization, Spellings, Punctuation-Parts of Sentences.

Grammar: Parts of Speech, Basic Sentence Structures-forming questions **Vocabulary:** Synonyms, Antonyms, Affixes (Prefixes/Suffixes), Root words.

UNIT-II

Lesson: NATURE: The Brook by Alfred Tennyson (Poem)

Listening: Answering a series of questions about main ideas and supporting ideas after

listening to audio texts.

Speaking: Discussion in pairs/small groups on specific topics followed by short structure

talks.

Reading: Identifying sequence of ideas; recognizing verbal techniques that help to link

the ideas in a paragraph together.

Writing: Structure of a paragraph - Paragraph writing (specific topics)

Grammar: Cohesive devices - linkers, use of articles and zero article; prepositions.

Vocabulary: Homonyms, Homophones, Homographs.

UNIT-III

Lesson: BIOGRAPHY: Elon Musk

Listening: Listening for global comprehension and summarizing what is listened to. **Speaking:** Discussing specific topics in pairs or small groups and reporting what is

discussed

Reading: Reading a text in detail by making basic inferences -recognizing and

interpreting specific context clues; strategies to use text clues for

comprehension.

Writing: Summarizing, Note-making, paraphrasing

Grammar: Verbs - tenses; subject-verb agreement; Compound words, Collocations

Vocabulary: Compound words, Collocations

UNIT-IV

Lesson: INSPIRATION: The Toys of Peace by Saki

Listening: Making predictions while listening to conversations/ transactional dialogues

without video; listening with video.

Speaking: Role plays for practice of conversational English in academic contexts

(formal and informal) - asking for and giving information/directions.

Reading: Studying the use of graphic elements in texts to convey information,

reveal trends/patterns/relationships, communicate processes or

display complicated data.

Writing: Letter Writing: Official Letters, Resumes

Grammar: Reporting verbs, Direct & Indirect speech, Active & Passive Voice

Vocabulary: Words often confused, Jargons

UNIT-V

Lesson: MOTIVATION: The Power of Intrapersonal Communication (An Essay)

Listening: Identifying key terms, understanding concepts and answering a series of

relevant questions that test comprehension.

Speaking: Formal oral presentations on topics from academic contexts

Reading: Reading comprehension.

Writing: Writing structured essays on specific topics.

Grammar: Editing short texts –identifying and correcting common errors in grammar and

usage (articles, prepositions, tenses, subject verb agreement)

Vocabulary: Technical Jargons

TEXTBOOKS:

- 1. Pathfinder: Communicative English for Undergraduate Students, 1st Edition, Orient Black Swan, 2023 (Units 1,2 & 3)
- 2. Empowering with Language by Cengage Publications, 2023 (Units 4 & 5)

REFERENCE BOOKS:

- 1. Dubey, Sham Ji & Co. English for Engineers, Vikas Publishers, 2020
- 2. Bailey, Stephen. Academic writing: A Handbook for International Students. Routledge, 2014.
- 3. Murphy, Raymond. English Grammar in Use, Fourth Edition, Cambridge University Press, 2019.
- 4. Lewis, Norman. Word Power Made Easy- The Complete Handbook for Building a Superior Vocabulary. Anchor, 2014.

Web Resources:

GRAMMAR:

- 1. www.bbc.co.uk/learningenglish
- 2. https://dictionary.cambridge.org/grammar/british-grammar/
- 3. www.eslpod.com/index.html
- 4. https://www.learngrammar.net/
- 5. https://english4today.com/english-grammar-online-with-quizzes/
- 6. https://www.talkenglish.com/grammar/grammar.aspx

VOCABULARY

- 1. https://www.youtube.com/c/DailyVideoVocabulary/videos
- 2. https://www.youtube.com/channel/UC4cmBAit8i_NJZE8qK8sfpA

I B.TECH I SEMESTER	L	T	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS		
1 SEMILS ILK	3	-	-	30	70	100	3		
SUBCODE:		CHEMISTRY							

COURSE OBJECTIVES:

- To familiarize engineering chemistry and its applications
- To train the students on the principles and applications of electrochemistry and polymers
- To introduce instrumental methods, molecular machines and switches.

COURSE OUTCOMES:

At the end of the course, the students will be able to:

CO1: Compare the materials of construction for battery and electrochemical sensors.

CO2: Explain the preparation, properties, and applications of thermoplastics & thermosetting & elastomers conducting polymers.

CO3: Explain the principles of spectrometry, slc in separation of solid and liquid mixtures.

CO4: Apply the principle of Band diagrams in the application of conductors and Semi conductors.

CO5: Summarize the concepts of Instrumental methods.

SYLLABUS:

UNIT-I

Structure and Bonding Models:

Fundamentals of Quantum mechanics, Schrodinger Wave equation, significance of Ψ and Ψ^2 , particle in one dimensional box, molecular orbital theory – bonding in homo- and heteronuclear diatomic molecules – energy level diagrams of O2 and CO, etc. π -molecular orbitals of butadiene and benzene, calculation of bond order.

UNIT-II

Modern Engineering materials Semiconductors – Introduction, basic concept, application Super conductors-Introduction basic concept, applications.

Super capacitors: Introduction, Basic Concept-Classification – Applications.

Nano materials: Introduction, classification, properties and applications of Fullerenes, carbon nano tubes and Graphines nanoparticles.

UNIT III

Electrochemistry and Applications

Electrochemical cell, Nernst equation, cell potential calculations and numerical problems, potentiometry- potentiometric titrations (redox titrations), concept of conductivity, conductivity cell, conductometric titrations (acid-base titrations).

Electrochemical sensors – potentiometric sensors with examples, amperometric sensors with examples.

Primary cells – Zinc-air battery, Secondary cells –lithium-ion batteries- working of the batteries including cell reactions; Fuel cells, hydrogen-oxygenfuel cell– working of the cells. Polymer Electrolyte Membrane Fuel cells (PEMFC).

UNIT IV

Polymer Chemistry

Introduction to polymers, functionality of monomers, chain growth and step growth polymerization, coordination polymerization, with specific examples and mechanisms of polymer formation.

Plastics –Thermo and Thermosetting plastics, Preparation, properties and applications of – PVC, Teflon, Bakelite, Nylon-6,6, carbon fibres.

Elastomers-Buna-S, Buna-N-preparation, properties and applications.

Conducting polymers – polyacetylene, polyaniline, – mechanism of conduction and applications. Bio-Degradable polymers - Poly Glycolic Acid (PGA), Polyl Lactic Acid (PLA).

UNIT-V

Instrumental Methods and Applications

Electromagnetic spectrum. Absorption of radiation: Beer-Lambert's law. UV-Visible Spectroscopy, electronic transition, Instrumentation, IR spectros copies, fundamental modes and selection rules, Instrumentation. Chromatography-Basic Principle, Classification-HPLC: Principle, Instrumentation and Applications.

TEXTBOOKS:

- 1. Jain and Jain, Engineering Chemistry, 16/e, Dhanpat Rai, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e,Oxford University Press, 2010.

REFERENCE BOOKS:

- 1. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 2. J.D. Lee, Concise Inorganic Chemistry, 5th Edition, Wiley Publications, Feb.2008
- 3. Textbook of Polymer Science, Fred W. Billmayer Jr, 3rd Edition

SUBCODE:	3	-	_		LGEBRA &		US
I SEMESTER	3			30	70	100	3
I B.TECH	L	T	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS

COURSE OBJECTIVES:

To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real-world problems and their applications.

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1: Develop and use of matrix algebra techniques that are needed by engineers for practical applications.

CO2: Utilize mean value theorems to real life problems.

CO3: Familiarize with functions of several variables which is useful in optimization.

CO4: Learn important tools of calculus in higher dimensions.

CO5: Familiarize with double and triple integrals of functions of several variables in two dimensions using Cartesian and polar coordinates and in three dimensions using cylindrical and spherical coordinates.

SYLLABUS:

UNIT-I

Matrices

Rank of a matrix by echelon form, normal form. Cauchy—Binet formulae (without proof). Inverse of Non- singular matrices by Gauss-Jordan method, System of linear equations: Solving system of Homogeneous and Non-Homogeneous equations by Gauss elimination method, Jacobi and Gauss Seidel Iteration Methods.

UNIT-II

Eigenvalues, Eigenvectors and Orthogonal Transformation

Eigenvalues, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form to canonical forms by Orthogonal Transformation.

UNIT-III

Calculus

Mean Value Theorems: Rolle's Theorem, Lagrange's mean value theorem with their geometrical interpretation, Cauchy's mean value theorem, Taylor's and Maclaurin theorems with remainders (without proof), Problems and applications on the above theorems.

UNIT-IV

Partial differentiation and Applications (Multi variable calculus) Functions of several variables: Continuity and Differentiability, Partial derivatives, total derivatives, chain rule, Directional derivative, Taylor's and Maclaurin's series expansion of functions of two

variables. Jacobians, Functional dependence, maxima and minima of functions of two variables, method of Lagrange multipliers.

UNIT-V

Multiple Integrals (Multi variable Calculus)

Double integrals, triple integrals, change of order of integration, change of variables to polar, cylindrical and spherical coordinates. Finding areas (by double integrals) and volumes (by double integrals and triple integrals).

TEXTBOOKS:

- 1. Higher Engineering Mathematics, B. S. Grewal, Khanna Publishers, 2017, 44th Edition
- 2. Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley & Sons, 2018, 10thEdition.

REFERENCE BOOKS:

- 1. Thomas Calculus, George B. Thomas, Maurice D. Weir and Joel Hass, Pearson Publishers, 2018, 14th Edition.
- 2. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Alpha Science International Ltd., 2021 5th Edition(9th reprint).
- 3. Advanced Modern Engineering Mathematics, Glyn James, Pearson publishers, 2018, 5thEdition.
- 4. Advanced Engineering Mathematics, Micheael Greenberg, , Pearson publishers, 9thedition
- 5. Higher Engineering Mathematics, H. K Das, Er. Rajnish Verma, S. Chand Publications, 2014, Third Edition (Reprint 2021)

I B.TECH I SEMESTER	L	T	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS		
1 SEMILS ILK	3	-	-	30	70	100	3		
SUBCODE:	INTRODUCTION TO PROGRAMMING								

COURSE OBJECTIVES:

To introduce students to the fundamentals of computer programming.

- To provide hands-on experience with coding and debugging.
- To foster logical thinking and problem-solving skills using programming.
- To familiarize students with programming concepts such as data types, control structures, functions, and arrays.
- To encourage collaborative learning and teamwork in coding projects.

COURSE OUTCOMES:

At the end of the course, the students will be able to:

CO1: Realize basics of computers, the concept of algorithm and algorithmic Thinking.

CO2: Analyze a problem and develop an algorithm to solve it.

CO3: Implement various algorithms using the C programming language.

CO4: Identify more advanced features of C language.

CO5: Develop problem-solving skills and the ability to debug and optimize the code.

SYLLABUS:

UNIT-I

Introduction to Programming and Problem Solving

History of Computers, Basic organization of a computer: ALU, input-output units, memory, program counter, Introduction to Programming Languages, Basics of a Computer Program- Algorithms, flowcharts (Using Dia Tool), pseudo code. Introduction to Compilation and Execution, Primitive Data Types, Variables, and Constants, Basic Input and Output, Operations, Type Conversion, and Casting. Problem solving techniques: Algorithmic approach, characteristics of algorithm, Problem solving strategies: Top-down approach, Bottom-up approach, Time and space complexities of algorithms.

UNIT-II

Control Structures

Simple sequential programs Conditional Statements (if, if-else, switch), Loops (for, while, do-while) Break and Continue.

UNIT-III

Arrays and Strings

Arrays indexing, memory model, programs with array of integers, two dimensional arrays, Introduction to Strings.

UNIT-IV

Pointers & User Defined Data types

Pointers, dereferencing and address operators, pointer and address arithmetic, array manipulation using pointers, User-defined data types-Structures and Unions.

UNIT-V

Functions & File Handling

Introduction to Functions, Function Declaration and Definition, Function call Return Types and Arguments, modifying parameters inside functions using pointers, arrays as parameters. Scopeand Lifetime of Variables, Basics of File Handling

Note: The syllabus is designed with C Language as the fundamental language of implementation.

TEXTBOOKS:

- 1. "The C Programming Language", Brian W. Kernighan and Dennis M. Ritchie, Prentice- Hall, 1988
- 2. Schaum's Outline of Programming with C, Byron S Gottfried, McGraw-Hill Education, 1996

REFERENCE BOOKS:

- 1. Computing fundamentals and C Programming, Balagurusamy, E., McGraw-Hill Education, 2008.
- 2. Programming in C, Rema Theraja, Oxford, 2016, 2nd edition
- 3. C Programming, A Problem Solving Approach, Forouzan, Gilberg, Prasad, CENGAGE, 3rd edition

I B.TECH	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS			
I SEMESTER	-	-	2	30	70	100	1			
SUBCODE:	C	COMMUNICATIVE ENGLISH LAB								

COURSE OBJECTIVES:

The main objective of introducing this course, Communicative English Laboratory, is to expose the students to a variety of self-instructional, learner friendly modes of language learning. The students will get trained in basic communication skills and also make them ready to face job interviews.

COURSE OUTCOMES:

At the end of the course, the student will be able to:

- CO1: Understand the different aspects of the English language proficiency with emphasis on LSRW skills.
- CO2: Apply communication skills through various language learning activities.
- **CO3:** Analyze the English speech sounds, stress, rhythm, intonation and syllable division for better listening and speaking comprehension.
- **CO4:** Evaluate and exhibit professionalism in participating in debates and group discussions. CO5: Create effective Course Objectives:

SYLLABUS:

List of Topics:

- 1. Vowels & Consonants
- 2. Neutralization/Accent Rules
- 3. Communication Skills & JAM
- 4. Role Play or Conversational Practice
- 5. E-mail Writing
- 6. Resume Writing, Cover letter, SOP
- 7. Group Discussions-methods & practice
- 8. Debates Methods & Practice
- 9. PPT Presentations/ Poster Presentation
- 10. Interviews Skills

Suggested Software:

- Walden Infotech
- Softx Communicative English lab software
- Young India Films

REFERENCE BOOKS:

- 1. Raman Meenakshi, Sangeeta-Sharma. *Technical Communication*. Oxford Press. 2018.
- 2. Taylor Grant: *English Conversation Practice*, Tata McGraw-Hill Education India, 2016
- 3. Hewing's, Martin. Cambridge Academic English (B2). CUP, 2012.
- 4. J. Sethi & P.V. Dhamija. *A Course in Phonetics and Spoken English*, (2nd Ed), Kindle, 2013

Web Resources:

Spoken English:

- 1. www.esl-lab.com
- 2. www.englishmedialab.com
- 3. www.englishinteractive.net
- 4. https://www.britishcouncil.in/english/online
- 5. http://www.letstalkpodcast.com/
- 6. https://www.youtube.com/c/mmmEnglish_Emma/featured
- 7. https://www.youtube.com/c/ArnelsEverydayEnglish/featured
- 8. https://www.youtube.com/c/engvidAdam/featured
- 9. https://www.youtube.com/c/EnglishClass101/featured
- 10. https://www.youtube.com/c/SpeakEnglishWithTiffani/playlists
- 11. https://www.youtube.com/channel/UCV1h_cBE0Drdx19qkTM0WNw

Voice & Accent:

- 1. https://www.youtube.com/user/letstalkaccent/videos
- 2. https://www.youtube.com/c/EngLanguageClub/featured
- 3. https://www.youtube.com/channel/UCNfm92h83W2i2ijc5Xwp_

I B.TECH I SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS			
	-	-	2	30	70	100	1			
SUBCODE:		CHEMISTRY LAB								

COURSE OBJECTIVES:

Verify the fundamental concepts with experiments.

COURSE OUTCOMES:

At the end of the course, the students will be able to:

- **CO1:** Determine the cell constant and conductance of solutions.
- CO2: Prepare advanced polymer Bakelite materials.
- CO3: Measure the strength of an acid present in secondary batteries.
- CO4: Analyze the IR spectra of some organic compounds.
- CO5: Calculate strength of acid in Pb-Acid battery.

SYLLABUS:

List of Experiments:

- 1. Measurement of 10Dq by spectrophoto metric method
- 2. Conduct metric titration of strong acid vs. strong base
- 3. Conduct metric titration of weak acid vs. strong base
- 4. Determination of cell constant and conductance of solutions
- 5. Potentiometry determination of redox potentials and emfs
- 6. Determination of Strength of an acid in Pb-Acid battery
- 7. Preparation of a Bakelite
- 8. Verify Lambert-Beer's law
- 9. Wavelength measurement of sample through UV-Visible Spectroscopy
- 10. Identification of simple organic compounds by IR
- 11. Preparation of nanomaterials by precipitation method
- 12. Estimation of Ferrous Iron by Dichrometry

Reference:

• "Vogel's Quantitative Chemical Analysis 6th Edition 6th Edition" Pearson Publications by J. Mendham, R.C.Denney, J.D.Barnes and B. Sivasankar

I SEMESTER SUBCODE:	-	-	3	30	70 PROGRAMI	100	1.5
I B.TECH	L	T	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS

COURSE OBJECTIVES:

The course aims to give students hands – on experience and train them on the concepts of the C- programming language.

COURSE OUTCOMES:

At the end of the course, the students will be able to:

- CO1: Read, understand, and trace the execution of programs written in C language.
- CO2: Select the right control structure for solving the problem.
- CO3: Develop C programs which utilize memory efficiently using programming constructs like pointers.
- **CO4**: Develop, Debug and Execute programs to demonstrate the applications of arrays, functions, basic concepts of pointers in C.

SYLLABUS:

UNIT-I

WEEK 1

Objective: Getting familiar with the programming environment on the computer and writing the first program.

Suggested Experiments/Activities:

Tutorial 1: Problem-solving using Computers.

Lab1: Familiarization with programming environment

- i) Basic Linux environment and its editors like Vi, Vim & Emacs etc.
- ii) Exposure to Turbo C, gcc
- iii) Writing simple programs using printf(), scanf()

WEEK 2

Objective: Getting familiar with how to formally describe a solution to a problem in a series of finite steps both using textual notation and graphic notation.

Suggested Experiments /Activities:

Tutorial 2: Problem-solving using Algorithms and Flow charts.

Lab 1: Converting algorithms/flow charts into C Source code.

Developing the algorithms/flowcharts for the following sample programs

- i) Sum and average of 3 numbers
- ii) Conversion of Fahrenheit to Celsius and vice versa
- iii) Simple interest calculation

WEEK 3

Objective: Learn how to define variables with the desired data-type, initialize them with appropriate values and how arithmetic operators can be used with variables and constants.

Suggested Experiments/Activities:

Tutorial 3: Variable types and type conversions:

Lab 3: Simple computational problems using arithmetic expressions.

- i) Finding the square root of a given number
- ii) Finding compound interest
- iii) Area of a triangle using heron's formulae
- iv) Distance travelled by an object

UNIT-II

WEEK 4

Objective: Explore the full scope of expressions, type-compatibility of variables & constants and operators used in the expression and how operator precedence works.

Suggested Experiments/Activities:

Tutorial4: Operators and the precedence and as associativity:

Lab4: Simple computational problems using the operator' precedence and associativity

- i) Evaluate the following expressions.
 - a. A+B*C+(D*E) + F*G
 - b. A/B*C-B+A*D/3
 - c. A+++B---A
 - d. J = (i++) + (++i)
- ii) Find the maximum of three numbers using conditional operator
- iii) Take marks of 5 subjects in integers, and find the total, average in float

WEEK 5

Objective: Explore the full scope of different variants of "if construct" namely ifelse, null- else, if-else if*-else, switch and nested-if including in what scenario each one of them can be used and how to use them. Explore all relational and logical operators while writing conditionals for "if construct".

Suggested Experiments/Activities:

Tutorial 5: Branching and logical expressions:

Lab 5: Problems involving if-then-else structures.

- i) Write a C program to find the max and min of four numbers using if-else.
- ii) Write a C program to generate electricity bill.
- iii) Find the roots of the quadratic equation.
- iv) Write a C program to simulate a calculator using switch case.
- v) Write a C program to find the given year is a leap year or not.

WEEK 6

Objective: Explore the full scope of iterative constructs namely while loop, do-while loop and for loop in addition to structured jump constructs like break and continue including when each of these statements is more appropriate to use.

Suggested Experiments/Activities:

Tutorial 6: Loops, while and for loops

Lab 6: Iterative problems e.g., the sum of series

- i) Find the factorial of given number using any loop.
- ii) Find the given number is a prime or not.
- iii) Compute sine and cos series
- iv) Checking a number palindrome
- v) Construct a pyramid of numbers.

UNIT-III

WEEK 7:

Objective: Explore the full scope of Arrays construct namely defining and initializing 1-D and 2-D and more generically n-D arrays and referencing individual array elements from the defined array. Using integer 1-D arrays, explore search solution linear search.

Suggested Experiments/Activities:

Tutorial 7: 1 D Arrays: searching.

Lab 7:1D Array manipulation, linear search

- i) Find the min and max of a 1-D integer array.
- ii) Perform linear search on1D array.
- iii) The reverse of a 1D integer array
- iv) Find 2's complement of the given binary number.
- v) Eliminate duplicate elements in an array.

WEEK 8:

Objective: Explore the difference between other arrays and character arrays that can be used as Strings by using null character and get comfortable with string by doing experiments that will reverse a string and concatenate two strings. Explore sorting solution bubble sort using integer arrays.

Suggested Experiments/Activities:

Tutorial 8: 2 D arrays, sorting and Strings.

Lab 8: Matrix problems String operations, Bubble sort,

- i) Addition of two matrices
- ii) Multiplication two matrices
- iii) Sort array elements using bubble sort
- iv) Concatenate two strings without built-in functions
- v) Reverse a string using built-in and without built-in string functions

UNIT-IV

WEEK 9:

Objective: Explore pointers to manage a dynamic array of integers, including memory allocation & to limitalization, resizing changing and reordering the contents of an array and memory de-allocation using malloc (), calloc (), realloc () and free () functions. Gain experience processing command-line arguments received by C

Suggested Experiments/Activities:

Tutorial 9: Pointers, structures and dynamic memory allocation

Lab 9: Pointers and structures, memory dereference.

- i) Write a C program to find the sum of a 1D array using malloc()
- ii) Write a C program to find the total, average of n students using structures
- iii) Enter n students data using calloc() and display failed students list
- iv) Read student name and marks from the command line and display the student details along with the total.
- v) Write a C program to implement realloc()

WEEK 10:

Objective: Experiment with C Structures, Unions, bit fields and self-referential structures (Singly linked lists) and nested structures

Suggested Experiments/Activities:

Tutorial 10: Bitfields, Self-Referential Structures, Linked lists

Lab10: Bitfields, linked lists

Read and print a date using dd/mm/yyyy format using bit-fields and differentiate the same without using bit- fields

- i) Create and display a singly linked list using self-referential structure.
- ii) Demonstrate the differences between structures and unions using a C program.
- iii) Write a C program to shift/rotate using bitfields.
- iv) Write a C program to copy one structure variable to another structure of the same type.

UNIT-V

WEEK 11:

Objective: Explore the Functions, sub-routines, scope and extent of variables, doing some experiments by parameter passing using call by value. Basic methods of numerical integration

Suggested Experiments/Activities:

Tutorial 11: Functions, call by value, scope and extent,

Lab 11: Simple functions using call by value, solving differential equations using Eulers theorem.

- i) Write a C function to calculate NCR value.
- ii) Write a C function to find the length of a string.
- iii) Write a C function to transpose of a matrix.
- iv) Write a C function to demonstrate numerical integration of differential equations using Euler's method

WEEK 12:

Objective: Explore how recursive solutions can be programmed by writing recursive functions that can be invoked from the main by programming at-least five distinct problems that have naturally recursive solutions.

Suggested Experiments/Activities:

Tutorial 12: Recursion, the structure of recursive calls

Lab 12: Recursive functions

- i) Write a recursive function to generate Fibonacci series.
- ii) Write a recursive function to find the lcm of two numbers.
- iii) Write a recursive function to find the factorial of a number.

- iv) Write a C Program to implement Ackermann function using recursion.
- v) Write a recursive function to find the sum of series.

WEEK 13:

Objective: Explore the basic difference between normal and pointer variables, Arithmetic operations using pointers and passing variables to functions using pointers

Suggested Experiments/Activities:

Tutorial 13: Call by reference, dangling pointers

Lab 13: Simple functions using Call by reference, Dangling pointers.

- i) Write a C program to swap two numbers using call by reference.
- ii) Demonstrate Dangling pointer problem using a C program.
- iii) Write a C program to copy one string into another using pointer.
- iv) Write a C program to find no of lowercase, uppercase, digits and other characters using pointers.

WEEK14:

Objective: To understand data files and file handling with various file I/O functions. Explore the differences between text and binary files.

Suggested Experiments/Activities:

Tutorial 14: File handling

Lab 14: File operations

- i) Write a C program to write and read text into a file.
- ii) Write a C program to write and read text into a binary file using fread() and fwrite()
- iii) Copy the contents of one file to another file.
- iv) Write a C program to merge two files into the third file using command-line arguments.
- v) Find no. of lines, words and characters in a file
- vi) Write a C program to print last n characters of a given file.

TEXTBOOKS:

- 1. Ajay Mittal, Programming in C: A practical approach, Pearson.
- 2. Byron Gottfried, Schaum' s Outline of Programming with C, McGraw Hill

REFERENCE BOOKS:

- 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice- Hall of India
- 2. C Programming, A Problem-Solving Approach, Forouzan, Gilberg, Prasad, CENGAGE

I B.TECH I SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
1 SEMESTER	-	-	1	30	70	100	0.5
SUBCODE:					LLNESS, YOG TECH I SEME		

COURSE OBJECTIVES:

The main objective of introducing this course is to make the students maintain their mental and physical wellness by balancing emotions in their life. It mainly enhances the essential traits required for the development of the personality.

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1: Understand the importance of yoga and sports for Physical fitness and sound health.

CO2: Demonstrate an understanding of health-related fitness components.

CO3: Compare and contrast various activities that help enhance their health.

CO4: Assess current personal fitness levels.

CO5: Develop Positive Personality

SYLLABUS:

UNIT-I

Concept of health and fitness, Nutrition and Balanced diet, basic concept of immunity Relationship between diet and fitness, Globalization and its impact on health, Body Mass Index(BMI) of all age groups.

Activities:

- i) Organizing health awareness programmes in community
- ii) Preparation of health profile
- iii) Preparation of chart for balance diet for all age groups

UNIT-II

Concept of yoga, need for and importance of yoga, origin and history of yoga in Indian context, classification of yoga, Physiological effects of Asanas-Pranayama and meditation, stress management and yoga, Mental health and yoga practice.

Activities:

Yoga practices – Asana, Kriya, Mudra, Bandha, Dhyana, Surya Namaskar

UNIT-III

Concept of Sports and fitness, importance, fitness components, history of sports, Ancient and Modern Olympics, Asian games and Commonwealth games.

Activities:

- i) Participation in one major game and one individual sport viz., Athletics, Volleyball, Basketball, Handball, Football, Badminton, Kabaddi, Kho-kho, Table tennis, Cricket etc.Practicing general and specific warm up, aerobics
- ii) Practicing cardiorespiratory fitness, treadmill, run test, 9 min walk, skipping and running.

REFERENCE BOOKS:

- 1. Gordon Edlin, Eric Golanty. Health and Wellness, 14th Edn. Jones & Bartlett Learning, 2022
- 2. T.K.V.Desikachar. The Heart of Yoga: Developing a Personal Practice
- 3. Archie J.Bahm. Yoga Sutras of Patanjali, Jain Publishing Company, 1993
- 4. Wiseman, John Lofty, SAS Survival Handbook: The Ultimate Guide to Surviving Anywhere Third Edition, William Morrow Paperbacks, 2014
- 5. The Sports Rules Book/ Human Kinetics with Thomas Hanlon. -- 3rded. Human Kinetics, Inc.2014

General Guidelines:

- 1. Institutes must assign slots in the Timetable for the activities of Health/Sports/Yoga.
- 2. Institutes must provide field/facility and offer the minimum of five choices of as many as Games/Sports.
- 3. Institutes are required to provide sports instructor / yoga teacher to mentor the students.

Evaluation Guidelines:

- Evaluated for a total of 100 marks.
- A student can select 6 activities of his/her choice with a minimum of 01 activity per unit. Each activity shall be evaluated by the concerned teacher for 15 marks, totaling to 90 marks.
- A student shall be evaluated by the concerned teacher for 10 marks by conducting viva voce on the subject.

I B.TECH SEMISTER-II

S.N o.	Subject Code	SUBJECT	Cat.Code	INTERNA L MARKS	EXTERNA L MARKS	TOTAL MARKS	L	Т	P	CR EDI TS
1		Engineering Physics	BS& H	30	70	100	3		0	3
2		Differential Equations & Vector Calculus	BS&H	30	70	100	3		0	3
3		Basic Electrical and Electronics Engineering	ES	30	70	100	3		0	3
4		Engineering Graphics	ES	30	70	100	1		4	3
5		IT Workshop	ES	30	70	100	0		2	1
6		Data Structures	PC	30	70	100	3		0	3
7		Engineering Physics Lab	BS&H	30	70	100	0		2	1
8		Electrical and Electronics Engineering Workshop	ES	30	70	100	0		3	1.5
9		Data Structures Lab	PC	30	70	100	0		3	1.5
10		NSS/ Community Service					-		1	0.5
		Total					13	0	15	20.5

I B.TECH	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS	
II SEMESTER	3	-	-	30	70	100	3	
SUBCODE:		ENGINEERING PHYSICS						

COURSE OBJECTIVES:

To bridge the gap between the Physics in school at 10+2 level and UG level engineering courses by identifying the importance of the optical phenomenon like interference, diffraction etc, enlightening the periodic arrangement of atoms in crystalline solids and concepts of quantum mechanics, introduce novel concepts of dielectric and magnetic materials, physics of semiconductors.

COURSE OUTCOMES:

At the end of the course, the student will be able to:

- CO1: Analyze the intensity variation of light due to polarization, interference and diffraction.
- CO2: Familiarize with the basics of crystals and their structures.
- CO3: Explain fundamentals of quantum mechanics and apply it to one dimensional motion of particles.
- CO4: Summarize various types of polarization of dielectrics and classify the magnetic materials.
- CO5: Explain the basic concepts of Quantum Mechanics and the band theory of solids.
- CO6: Identify the type of semiconductor using Hall effect.

SYLLABUS:

UNIT- I Wave Optics

12Hours

Interference: Introduction - Principle of superposition - Interference of light - Interference in thin films (Reflection Geometry) & applications - Colours in thin films- Newton's Rings, Determination of wavelength and refractive index.

Diffraction: Introduction - Fresnel and Fraunhofer diffractions - Fraunhofer diffraction due to single slit, double slit & N-slits (Qualitative) - Diffraction Grating - Dispersive power and resolving power of Grating (Qualitative). Polarization: Introduction - Types of polarization - Polarization by reflection, refraction and Double refraction - Nicol's Prism - Half wave and Quarter wave plates.

UNIT-II Crystallography and X-ray diffraction

11Hours

Crystallography: Space lattice, Basis, Unit Cell and lattice parameters – Bravais Lattices – crystal systems (3D) – coordination number - packing fraction of SC, BCC & FCC - Miller indices – separation between successive (hkl) planes.

X- ray diffraction: Bragg's law - X-ray Diffractometer - crystal structure determination byLaue's and powder methods

UNIT III Dielectric and Magnetic Materials

13Hours

Dielectric Materials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility, Dielectric constant and Displacement Vector - Relation between the electric vectors - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and Orientation

polarizations (Qualitative) - Lorentz internal field - Clausius- Mossotti equation - complex dielectric constant - Frequency dependence of polarization - dielectric loss Magnetic Materials: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability - Atomic origin of magnetism - Classification of magnetic materials: Dia, para, Ferro, anti-ferro & Ferri magnetic materials - Domain concept for Ferromagnetism & Domain walls (Qualitative) - Hysteresis - soft and hard magnetic materials and its Applications.

UNIT IV Quantum Mechanics and Free electron Theory 10Hours

Quantum Mechanics: Dual nature of matter – Heisenberg's Uncertainty Principle – Significance and properties of wave function – Schrodinger's time independent and dependent wave equations— Particle in a one-dimensional infinite potential well. Free Electron Theory: Classical free electron theory (Qualitative with discussion of merits and demerits) – Fermi-Dirac distribution - Density of states - Fermi energy-Quantum free electron theory – electrical conductivity based on quantum free electron theory.

UNIT- V Semiconductors

9Hours

Semiconductors: Formation of energy bands – classification of crystalline solids - Intrinsic semiconductors: Density of charge carriers – Electrical conductivity – Fermi level – Extrinsic semiconductors: density of charge carriers – dependence of Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's equation – Hall effect and its applications.

TEXTBOOKS:

- 1. A Text book of Engineering Physics, M. N. Avadhanulu, P.G.Kshirsagar & TVS Arun Murthy, S. Chand Publications, 11th Edition 2019.
- 2. Engineering Physics Shatendra Sharma, Jyotsna Sharma, Pearson Education, 2018
- 3. Engineering Physics P.K.Palani Samy

REFERENCE BOOKS:

- 1. Engineering Physics B.K. Pandey and S. Chaturvedi, Cengage Learning 2021.
- 2. Engineering Physics" Sanjay D. Jain, D. Sahasrabudhe and Girish, University Press. 2010
- 3. Engineering Physics M.R. Srinivasan, New Age international publishers (2009).

Web Resources: https://www.loc.gov/rr/scitech/selected-internet/physics.html

I B.TECH	L	T	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS	
II SEMESTER	3	-	-	30	70	100	3	
SUBCODE:	DI	DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS						

COURSE OBJECTIVES:

- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To furnish the learners with basic concepts and techniques at plus two level to lead them into advanced level by handling various real-world applications.

COURSE OUTCOMES:

At the end of the course, the student will be able to

CO1: Solve the differential equations related to various engineering fields.

CO2: Identify solution methods for partial differential equations that model physical processes.

CO3: Interpret the physical meaning of different operators such as gradient, curl and divergence.

CO4: Estimate the work done against a field, circulation and flux using vector calculus.

SYLLABUS:

UNIT I

Differential equations of first order and first degree

Linear differential equations – Bernoulli's equations- Exact equations and equations reducible to exact form. Applications: Newton's Law of cooling – Law of natural growth and decay- Electrical circuits.

UNIT II

Linear differential equations of higher order (Constant Coefficients)

Definitions, homogenous and non-homogenous, complimentary function, general solution, particular integral, Wronskian, Method of variation of parameters. Simultaneous linear equations, Applications to L-C-R Circuit problems and Simple Harmonic motion.

UNIT III

Partial Differential Equations

Introduction and formation of Partial Differential Equations by elimination of arbitrary constants and arbitrary functions, solutions of first order linear equations using Lagrange's method. Homogeneous Linear Partial differential equations with constant coefficients.

UNIT IV

Vector differentiation

Scalar and vector point functions, vector operator Del, Del applies to scalar point functions-Gradient, Directional derivative, del applied to vector point functions-Divergence and Curl, vector identities.

UNIT V

Vector integration

Line integral-circulation-work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof) and related problems.

TEXTBOOKS:

- 1. Higher Engineering Mathematics, B. S. Grewal, Khanna Publishers, 2017, 44th Edition
- 2. Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley & Sons, 2018, 10thEdition.

REFERENCE BOOKS:

- 1. Thomas Calculus, George B. Thomas, Maurice D. Weir and Joel Hass, Pearson Publishers, 2018, 14th Edition.
- 2. Advanced Engineering Mathematics, Dennis G. Zill and Warren S. Wright, Jones and Bartlett, 2018.
- 3. Advanced Modern Engineering Mathematics, Glyn James, Pearson publishers, 2018,5th Edition.
- 4. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Alpha Science International Ltd., 2021 5th Edition (9th reprint).
- 5. Higher Engineering Mathematics, B. V. Ramana, , McGraw Hill Education, 2017

I B.TECH II SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS	
II SEMESTER	-	-	2	30	70	100	1	
SUBCODE:		IT WORKSHOP						

COURSE OBJECTIVES:

- To introduce the internal part so facomputer, peripherals, I/Oports, connecting cables
- TodemonstrateconfiguringthesystemasDualbootbothWindowsandotherOper atingSystemsViz. Linux, BOSS
- To teach basic command lineinter face command sonLinux.
- To teach the usageofInternet for productivity and self-paced life-longlearning
- TointroduceCompression,MultimediaandAntivirustoolsandOfficeToolssuch asWordprocessors, Spreadsheets and Presentation tools.

COURSEOUTCOMES:

At the end of the course, the students will be able to:

CO1:Demonstrate Hardware troubleshooting

CO2: Identify Hardware components and inter dependencies.

CO3:Describe usage of web browsers, email, news groups and discussion forums.

CO4: Design word documents and create presentations using different styles.

CO5:Prepare spreadsheets with calculations

SYLLABUS:

PC Hardware & Software Installation

Task-1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

- **Task-2:** Every student should disassemble and assemble the PC back to working condition. Labinstructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.
- **Task 3**: Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.
- **Task 4:** Every student should install Linux on the computer. This computer should havewindowsinstalled. The system should be configured as dual boot (VMW are) with both Windows and Linux. Labin structors should verify the installation and follow it up with a Viva

Task5:EverystudentshouldinstallBOSSonthecomputer. The systemshould be configured as dual boot (VMW are) with both Windows and BOSS. Lab instructors should verify the installation and follow it up with a Viva

Internet & World Wide Web

Task1: Orientation & Connectivity Boot Camp: Students should get connected to their Local area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

Task-2: Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and popup blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.

Task3: Search

Engines & Netiquette: Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.

Task 4: Cyber Hygiene: Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to customize their browsers to block pop ups, block active downloads to avoid viruses and/or worms.

LaTeX and WORD

Task 1 – Word Orientation: The mentor needs to give an overview of La TeX and Microsoft(MS)officeorequivalent(FOSS)toolword:ImportanceofLaTeXandMSofficeorequivalent(FOSS) tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using LaTeX and word–Accessing, over view of toolbars, saving files, Using help and resources, rulers, format painter in word.

Task 2: Using La TeX and Word to create a project certificate. Features to be covered:-Formatting Fonts in word, Drop Capinword, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word.

Task 3: Creating project abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cellalignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.

Task4: Creatinga Newsletter: Feature sto becovered:-

TableofContent, Newspapercolumns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Mergein word.

EXCEL

Excel Orientation: The mentor need stotell the importance of MS office or equivalent(FOSS)tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. UsingExcel—Accessing, overviewoftoolbars, saving excel files, Using helpandresources.

Task 1: Creating a Scheduler - Features to be covered: Gridlines, Format Cells,

Summation, auto fill, Formatting Text

Task 2: Calculating GPA -. Features to be covered:- Cell Referencing, Formulae in excel –average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function,

LOOKUP/VLOOKUP

Task 3: Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting

POWERPOINT

Task 1: Students will be working on basic power point utilities and tools which help them create basic power point presentations. PPT Orientation, Slide Layouts, Inserting Text, WordArt, Formatting Text, Bullets and Numbering ,Auto Shapes, Lines and Arrows in PowerPoint.

Task 2: Interactive presentations - Hyperlinks, Inserting -Images, Clip Art, Audio, Video, Objects, Tables and Charts.

Task 3: Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notesetc), and Inserting—Background, textures, Design Templates, Hidden slides.

AITOOLS -Chat GPT

Task1:PromptEngineering:Experimentwithdifferenttypesofpromptstoseehowthemo delresponds. Tryaskingquestions, startingconversations, or even providing incompletes entences to seehow the model completes them.

• Ex:Prompt:"YouareaknowledgeableAI.Pleaseanswerthefollowingquestion: Whatisthecapital of France?"

Task2:CreativeWriting:Usethemodelasawritingassistant.Providethebeginningofasto ryoradescriptionof ascene, and let the model generate the rest of the content. This can be a fun way to brainstorm creative ideas

 Ex: Prompt: "In a world where gravity suddenly stopped working, people started floating upwards. Write astory about how society adapted to this new reality."

Task 3: Language Translation: Experiment with translation tasks by providing a sentence

inonelanguageandaskingthemodeltotranslateitintoanotherlanguage.Comparetheoutp uttoseehow accurate and fluent the translations are.

• Ex: Prompt: 'Translate the following English sentence to French: 'Hello, how are you doing today?'"

REFERENCEBOOKS:

- 1. Comdex Information Technology course tool kit, Vikas Gupta, WILEY Dreamtech.2003
- 2. The Complete Computer up grade and repair book, Cheryl ASchmidt, WILEYD

reamtech,2013,3rd edition

- 3. IntroductiontoInformationTechnology,ITLEducationSolutionslimited,PearsonEducation,2012, 2^{nd} edition
- 4. PC Hardware-A Handbook, Kate J.Chase, PHI(Microsoft)
- 5. LaTeX Companion, Leslie Lamport, PHI/Pearson.
- 6. IT Essentials PC Hardware and Software Companion Guide, David Anfinson and Ken Quamme.— CISCO Press, Pearson Education,3rd edition
- 7. ITEssentialsPCHardwareandSoftwareLabsandStudyGuide,PatrickRegan—CISCOPress,Pearson Education,3rdedition

I B.TECH II SEMESTER	L	T	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS	
II SEMESTER	3	-	-	30	70	100	3	
SUBCODE:		DATA STRUCTURES						

COURSE OBJECTIVES:

- To illustrate various sorting techniques and analyze the order of complexities of algorithms
- To develop algorithms to implement various linked lists operations.
- To demonstrate operations of linear data structures like stacks and queues and their applications
- To demonstrate operations of non-linear data structures, trees and graphs.

COURSEOUTCOMES:

At the end of the course, student will be able to

- **CO1**: Choose the appropriate data structure and algorithm for a specified application and evaluate algorithms and data structures in terms of Time and Space complexity.
- CO2: Analyze and implement operations on linked lists and demonstrate their applications.
- **CO3**: Solve problems using data structures such as stacks and queues and writing programs for these solutions.
- **CO4**: Invent novel solutions to small scale programming challenges involving data structures such as Trees.
- **CO5**: Summarize the operations on Graphs and apply Graph Traversals Techniques and outline Hashing Techniques.

SYLLABUS:

UNIT-I

Introduction to Linear Data Structures:

Definition and importance of linear data structures, Abstract data types (ADTs), Analysis of time and space complexities.

Searching Techniques: Linear & Binary Search.

Sorting Techniques: Bubble sort, Selection sort, Insertion sort.

UNIT-II

Linked Lists:

Operations on Singly linked list, doubly linked lists and circular linked lists, Applications of linked lists.

UNIT-III

Stacks: Introduction, operations on stacks, implementing stacks using arrays and linked lists, Applications of stacks in expression evaluation.

Queues: Introduction, operations on queues, implementing queues using arrays and linked lists.

De-queues: Introduction, Operations on de-queues

UNIT-IV

Trees: Introduction to Trees, **Binary Trees**- Properties, Representation of Binary Treesusing Arrays and Linked List, Binary Tree Traversals.

Binary Search Trees: Basic concepts, BST operations: Search, insertion, deletion and traversals, Height Balanced Trees (AVL).

UNIT-V

Graphs: Basic concepts, representations of graphs, Graph Traversals-Breadth First Search and Depth First Search techniques.

Hashing: Basic concepts, Hashing Functions (Division Method, Multiplication Method), Collision Resolution Techniques- Open Hashing and Closed Hashing

TEXTBOOKS:

- 1. Data Structures and algorithm analysis in C,Mark AllenWeiss,Pearson,2ndEdition.
- 2. FundamentalsofdatastructuresinC,EllisHorowitz,SartajSahni,SusanAnderson-Freed,Silicon Press, 2008

REFERENCEBOOKS:

- 1. Algorithms and DataStructures: The Basic Toolbox by Kurt Mehlhorn and Peter Sanders
- 2. CDataStructuresandAlgorithmsbyAlfredV.Aho,JeffreyD.Ullman,andJohnE. Hopcroft
- $3. \ \ Problem Solving with Algorithms and Data Structures "by Brad Miller and David Ranum" and David Ranum and David Ranum$
- 4. IntroductiontoAlgorithmsbyThomasH.Cormen,CharlesE.Leiserson,RonaldL.Rivest, and Clifford Stein
- 5. AlgorithmsinC,Parts15(Bundle):Fundamentals,DataStructures,Sorting,Searching,andG raph Algorithms" by Robert Sedge wick

I B.TECH	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
II SEMESTER	-	-	2	30	70	100	1
SUBCODE:			I	ENGINEER	ING PHYSIC	CS LAB	

COURSE OBJECTIVES:

To study the concepts of optical phenomenon like interference, diffraction etc., recognize the importance of energy gap in the study of conductivity and Hall effect in semiconductors and study the parameters and applications of dielectric and magnetic materials by conducting experiments.

COURSE OUTCOMES:

At the end of the course, student will be able to

CO1: Operate optical instruments like travelling microscope and spectrometer.

CO2: Estimate the wavelengths of different colors using diffraction grating.

CO3: Plot the intensity of the magnetic field of circular coil carrying current with distance.

CO4: Evaluate dielectric constant and magnetic susceptibility for dielectric and Magnetic materials respectively.

CO5: Calculate the band gap of a given semiconductor.

CO6: Identify the type of semiconductor using Hall effect.

SYLLABUS:

List of Experiments:

- 1. Determination of radius of curvature of a given Plano-convex lens by Newton's rings.
- 2. Determination of wavelengths of different spectral lines in mercury spectrum using diffraction grating in normal incidence configuration.
- 3. Verification of Brewster's law
- 4. Determination of dielectric constant using charging and discharging method.
- 5. Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
- 6. Determination of wavelength of Laser light using diffraction grating.
- 7. Estimation of Planck's constant using photoelectric effect.
- 8. Determination of the resistivity of semiconductors by four probe methods.

- 9. Determination of energy gap of a semiconductor using p-n junction diode.
- 10. Magnetic field along the axis of a current carrying circular coil by Stewart Gee's Method.
- 11. Determination of Hall voltage and Hall coefficient of a given semiconductor using Halleffect.
- 12. Determination of temperature coefficients of a thermistor.
- 13. Determination of acceleration due to gravity and radius of Gyration by using a compound pendulum.
- 14. Determination of magnetic susceptibility by Kundt's tube method.
- 15. Determination of rigidity modulus of the material of the given wire using Torsionalpendulum.
- 16. Sonometer: Verification of laws of stretched string.
- 17. Determination of young's modulus for the given material of wooden scale by non-uniform bending (or double cantilever) method.
- 18. Determination of Frequency of electrically maintained tuning fork by Melde's experiment.

Note: Any TEN of the listed experiments are to be conducted. Out of which any TWO experiments may be conducted in virtual mode.

References:

A Textbook of Practical Physics - S. Balasubramanian, M.N. Srinivasan,
 S. ChandPublishers, 2017.

Web Resources

• <u>www.vlab.co.in</u> https://phet.colorado.edu/en/simulations/filter?subjects=physics&type=html,prototype

I B.TECH II SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
II SEMIESTER	-	-	3	30	70	100	1.5
SUBCODE:				DATA ST	RUCTURES	LAB	

COURSE OBJECTIVES:

The course aims to strengthen the ability of the students to identify and apply the suitable data structure for the given real-world problem. It enables them to gain knowledge in practical applications of data structures.

COURSE OUTCOMES:

At the end of the course, Student will be able to

- CO1: Explain the role of linear data structures in organizing and accessing data efficiently in algorithms.
- CO2: Design, implement, and apply linked lists for dynamic data storage, demonstrating understanding of memory allocation.
- **CO3**: Develop programs using stacks to handle recursive algorithms, manage program states, and solve related problems.
- **CO4**: Apply queue-based algorithms for efficient task scheduling and breadth-first traversal in graphs and distinguish between deques and priority queues and apply them appropriately to solve data management challenges.
- **CO5**: Recognize scenarios where hashing is advantageous, and design hash-based solutions for specific problems.

SYLLABUS:

List of Experiments:

Exercise 1: Array Manipulation

- i) Write a program to reverse an array.
- ii) C Programs to implement the Searching Techniques Linear & Binary Search
- iii) C Programs to implement Sorting Techniques Bubble, Selection and Insertion Sort

Exercise 2: Linked List Implementation

- i) Implement a singly linked list and perform insertion and deletion operations.
- ii) Develop a program to reverse a linked list iteratively and recursively.
- iii) Solve problems involving linked list traversal and manipulation.

Exercise 3: Linked List Applications

- i) Create a program to detect and remove duplicates from a linked list.
- ii) Implement a linked list to represent polynomials and perform addition.
- iii) Implement a double-ended queue (deque) with essential operations.

Exercise 4: Double Linked List Implementation

i) Implement a doubly linked list and perform various operations to

- understand its properties and applications.
- ii) Implement a circular linked list and perform insertion, deletion, and traversal.

Exercise 5: Stack Operations

- i) Implement a stack using arrays and linked lists.
- ii) Write a program to evaluate a postfix expression using a stack.
- iii) Implement a program to check for balanced parentheses using a stack.

Exercise 6: Queue Operations

- i) Implement a queue using arrays and linked lists.
- ii) Develop a program to simulate a simple printer queue system.
- iii) Solve problems involving circular queues.

Exercise 7: Stack and Queue Applications

- i) Use a stack to evaluate an infix expression and convert it to postfix.
- ii) Create a program to determine whether a given string is a palindrome or not.
- iii) Implement a stack or queue to perform comparison and check for symmetry.

Exercise 8: Binary Search Tree

- i) Implementing a BST using Linked List.
- ii) Traversing of BST.

Exercise 9: Hashing

- i) Implement a hash table with collision resolution techniques.
- ii) Write a program to implement a simple cache using hashing.

TEXTBOOKS:

- 1. Data Structures and algorithm analysis in C, Mark Allen Weiss, Pearson, 2nd Edition.
- 2. Fundamentals of data structures in C, Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, Silicon Press, 2008

REFERENCE BOOKS:

- 1. Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and PeterSanders
- 2. C Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft
- 3. Problem Solving with Algorithms and Data Structures" by Brad Miller and David Ranum
- 4. Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
- 5. Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms by Robert Sedgewick.

I B.TECH II SEMESTER	L	Т	P	INTERNAL MARKS 30	EXTERNAL MARKS	TOTAL MARKS	CREDITS 0.5				
	-	-	1	30	70	100	0.5				
SUBCODE:		NSS/NCC/SCOUTS & GUIDES/COMMUNITY SERVICE									

COURSE OBJECTIVES:

The objective of introducing this course is to impart discipline, character, fraternity, teamwork, social consciousness among the students and engaging them in selfless service.

COURSE OUTCOMES:

At the end of the course, student will be able to:

- CO1: Understand the importance of discipline, character and service motto.
- **CO2:** Solve some societal issues by applying acquired knowledge, facts, and techniques.
- CO3: Explore human relationships by analyzing social problems.
- **CO4:** Determine to extend their help for the fellow beings and downtrodden people.
- CO5: Develop leadership skills and civic responsibilities.

SYLLABUS:

UNIT-I

Orientation

General Orientation on NSS/NCC/ Scouts & Guides/Community Service activities, career guidance.

Activities:

- i) Conducting -ice breaking sessions-expectations from the course-knowing personal talents and skills
- ii) Conducting orientations programs for the students -future plans-activities- releasing road map etc.
- iii) Displaying success stories-motivational biopics- award winning movies on societal issues etc.
- iv) Conducting talent show in singing patriotic songs-paintings- any other contribution.

UNIT-II

Nature &Care

Activities:

- i) Best out of waste competition.
- ii) Poster and signs making competition to spread environmental awareness.
- iii) Recycling and environmental pollution article writing competition.
- iv) Organising Zero-waste day.
- v) Digital Environmental awareness activity via various social media platforms.

- vi) Virtual demonstration of different eco-friendly approaches for sustainable living.
- vii) Write a summary on any book related to environmental issues.

UNIT-III

Community Service Activity:

- i) Conducting One Day Special Camp in a village contacting village-area leaders- Survey in the village, identification of problems- helping them to solve via media- authorities-experts-etc.
- ii) Conducting awareness programs on Health-related issues such as General Health, Mental health, Spiritual Health, HIV/AIDS,
- iii) Conducting consumer Awareness. Explaining various legal provisions etc.
- iv) Women Empowerment Programmes- Sexual Abuse, Adolescent Health and Population Education.
- v) Any other programmes in collaboration with local charities, NGOs etc.

REFERENCE BOOKS:

- 1. Nirmalya Kumar Sinha & Surajit Majumder, A Text Book of National Service Scheme
 - Vol; I, Vidya Kutir Publication, 2021 (ISBN 978-81-952368-8-6)
- Red Book National Cadet Corps Standing Instructions Vol I & II, Directorate General of NCC, Ministry of Defence, New Delhi
- 3. Davis M. L. and Cornwell D. A., "Introduction to Environmental Engineering", McGraw Hill, New York 4/e 2008
- Masters G. M., Joseph K. and Nagendran R. "Introduction to Environmental Engineering and Science", Pearson Education, New Delhi. 2/e 2007
- 5. Ram Ahuja. Social Problems in India, Rawat Publications, New Delhi.

General Guidelines:

- 1. Institutes must assign slots in the Timetable for the activities.
- 2. Institutes are required to provide instructor to mentor the students.

Evaluation Guidelines:

- Evaluated for a total of 100 marks.
- A student can select 6 activities of his/her choice with a minimum of 01 activity per unit. Each activity shall be evaluated by the concerned teacher for 15 marks, totaling to 90 marks.
- A student shall be evaluated by the concerned teacher for 10 marks by conducting viva voce on the subject.

DISCRETE

II B.Tech (CSE) COURSE STRUCTURE (R23)

1 SEMESTER

S. No	Subject Code	SUBJECT	Cat. Code	INTERN AL MARKS	EXTERN AL MARKS	TOTAL MARK S	L	Т	P	CR EDI TS
1		Discrete Mathematics & Graph Theory	BS&H	30	70	100	3	0	0	3
2		Universal Human Values— Understanding Harmony	BS&H	30	70	100	2	1	0	3
3		Digital Logic & Computer Organization	ES	30	70	100	3	0	0	3
4		Advanced Data Structures& Algorithm Analysis	PC	30	70	100	3	0	0	3
5		Object Oriented Programming Through Java	PC	30	70	100	3	0	0	3
6		Advanced Data Structures And Algorithm Analysis Lab	PC	30	70	100	0	0	3	1.5
7		Object Oriented Programming Through Java Lab	PC	30	70	100	0	0	3	1.5
8		Python Programming	SEC	30	70	100	0	1	2	2
9		Environmental Science	AC	30	70	100	2	0	0	-
		Total					16	2	8	20

II- SEMESTER

S.N o.	Subject Code	SUBJECT	Cat. Code	INTERNA L MARKS	EXTERNA L MARKS	TOTAL MARKS	L	Т	P	CR EDI TS
1		Managerial Economics and Financial Analysis	MC-1	30	70	100	2	0	0	2
2		Probability & Statistics	ES	30	70	100	3	0	0	3
3		Operating Systems	PC	30	70	100	3	0	0	3
4		Database Management Systems	PC	30	70	100	3	0	0	3
5		Software Engineering	PC	30	70	100	2	1	0	3
6		Operating Systems Lab	PC	30	70	100	0	0	3	1.5
7		Database Management Systems Lab	PC	30	70	100	0	0	3	1.5
8		Full Stack Development–I	SEC	30	70	100	0	1	2	2
9		Design Thinking & Innovation	BS&H	30	70	100	1	0	2	2
	F	Γotal					14	2	10	21

II B.TECH SEMISTER-I

S. No	Subject Code	SUBJECT	Cat. Code	INTERN AL MARKS	EXTERN AL MARKS	TOTAL MARK S	L	Т	P	CRED ITS
1		Discrete Mathematics& Graph Theory	BS&H	30	70	100	3	0	0	3
2		Universal Human Values— Understanding Harmony	BS&H	30	70	100	2	1	0	3
3		Digital Logic& Computer Organization	BS&H	30	70	100	3	0	0	3
4		Advanced Data Structures & Algorithm Analysis	ES	30	70	100	3	0	0	3
5		Object Oriented Programming Through Java	ES	30	70	100	3	0	0	3
6		Advanced Data Structures And Algorithm Analysis Lab	BS&H	30	70	100	0	0	3	1.5
7		Object Oriented Programming Through Java Lab	BS&H	30	70	100	0	0	3	1.5
8		Python Programming	SEC	30	70	100	0	1	2	2
9		Environmental Science	ES	30	70	100	2	0	0	-
	,	Total					14	2	8	20

SUBCODE:	3	DIGITAL LOGIC & COMPUTER ORGANIZATION							
II B.TECH I SEMESTER	L	Т	P	MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS		

COURSEOBJECTIVES:

The main objectives of the course is to

- Provide students with a comprehensive understanding of digital logic design principles and computer organization fundamentals
- Describe memory hierarchy concepts
- Explain input/output(I/O)systems and their interaction with the CPU, memory, and peripheral devices

COURSE OUTCOMES:

Student should be able to:

- CO1: Analyze Digital Circuits using Binary Number systems, Boolean Algebra, K-maps.
- **CO2**: Analyze the design procedures of Sequential circuits and identify functional units of a computer and register transfer operations
- **CO3:** Identify appropriate addressing modes for specifying the location of an operand and the design of Hardwired and Micro programmed control unit
- **CO4:** Analyze the concepts of memory organization its impact on computer cost/performance.
- **CO5:** Organize the different ways of communicating with I/O devices and standard I/O Interfaces.

SYLLABUS:

UNIT-I

Data Representation: Binary Numbers, Fixed Point Representation. Floating Point Representation. Number base conversions, Octal and Hexadecimal Numbers, components, Signed binary numbers, Binary codes

Digital Logic Circuits-I: Basic Logic Functions, Logic gates, universal logic gates, Minimization of Logic expressions. K-Map Simplification, Combinational Circuits, Decoders, Multiplexers

UNIT-II

Digital Logic Circuits-II: Sequential Circuits, Flip-Flops, Binary counters, Registers, Shift Registers, Ripple counters

Basic Structure of Computers: Computer Types, Functional units, Basic operational concepts, Bus structures, Software, Performance, multiprocessors and multi computers, Computer Generations, Von-Neumann Architecture

UNIT-III

Central Processing Unit: General Register Organization, STACK Organization. Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Program Control, Reduced Instruction Set Computer.

Micro programmed Control unit: Control Memory, Address Sequencing, Micro Program example, Design of Control Unit.

UNIT-IV

The Memory Organization: Basic Concepts, Semiconductor RAM Memories, Read-Only Memories, Speed, Size and Cost, Cache Memories, Performance Considerations, Virtual Memories, Memory Management Requirements, Secondary Storage

UNIT-V

Input /Output Organization: Accessing I/O Devices, Interrupts, Processor Examples, Direct Memory Access, Buses, Interface Circuits, Standard I/O Interfaces

TEXTBOOKS

- 1. Computer Organization, Carl Hamacher, Zvonko Vranesic, Safwat Zaky, 6thedition, McGraw Hill
- 2. DigitalDesign,6thEdition, M.Morris Mano, Pearson Education.
- 3. Computer Organization and Architecture, William Stallings, 11thEdition, Pearson.

REFERENCEBOOKS

- 1. Computer Systems Architecture, M.Moris Mano, 3rdEdition, Pearson
- 2. Computer Organization and Design, DavidA. Paterson, JohnL. Hennessy, Elsevier
- 3. FundamentalsofLogicDesign,Roth,5thEdition, Thomson

ONLINELEARNINGRESOURCES:

1. https://nptel.ac.in/courses/106/103/106103068/

II B.TECH I SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS				
1 SEMESTER	3	-	-	30	70	100	3				
SUBCODE:		ADVANCED DATA STRUCTURES & ALGORITHM ANALYSIS									

COURSEOBJECTIVES

The main objectives of the course is to

- provide knowledge on advance data structures frequently used in Computer Science domain
- Develop skills in algorithm design techniques popularly used
- Understand the use of various data structures in the algorithm design

COURSE OUTCOMES

At the end of the Course/Subject, the students will be able to:

- **CO1:** Analyze the time and space complexity and generate AVL Trees and B-Trees
- **CO2:** Analyze the Concept of Heap Trees, Graphs and Divide & Conquer Techniques
- **CO3:** Apply Greedy method and dynamic programming Strategies for solving problems
- **CO4:** Analyze Back tracking & Branch and Bound to determine Algorithms
- **CO5**: Distinguish between P and NP classes of Problems and solve complex problem

SYLLABUS:

UNIT-I

Introduction to Algorithm Analysis, Space and Time Complexity analysis, Asymptotic Notations. AVL Trees – Creation, Insertion, Deletion operations and Applications B-Trees—Creation, Insertion, Deletion operations and Applications

UNIT-II

Heap Trees (Priority Queues)—Min and Max Heaps, Operations and Applications Graphs—Terminology, Representations, Basic Search and Traversals, Connected Components and Bi connected Components, applications Divide and Conquer: The General Method, Quick Sort, Merge Sort, Strassen's matrix multiplication, Convex Hull

UNIT-III

Greedy Method: General Method, Job Sequencing with deadlines, Knapsack Problem, Minimum cost spanning trees, Single Source Shortest Paths Dynamic Programming: General Method, All pairs shortest paths, Optimal Binary Search Trees, 0/1 Knapsack, String

Editing, Travelling Sales person problem

UNIT-IV

Back tracking: General Method, 8-Queens Problem, Sum of Subsets problem, Graph Coloring, 0/1 Knapsack Problem Branch and Bound: The General Method, 0/1 Knapsack Problem, Travelling Sales person problem

UNIT-V

NP Hard and NP Complete Problems: Basic Concepts, Cook's theorem (Proof is not required) NP Hard Graph Problems: Clique Decision Problem (CDP), Traveling Salesperson Decision Problem (TSP) NP Hard Scheduling Problems: Job Shop Scheduling

TEXTBOOKS:

- 1. Fundamentals of Data Structures in C++, Horowitz, Ellis; Sahni, Sartaj; Mehta, Dinesh, 2ndEdition Universities Press
- 2. Computer Algorithms in C++, Ellis Horowitz Sartaj Sahni, Sanguthevar Rajasekaran, 2nd Edition University Press

REFERENCEBOOKS

- 1. Data Structures and program design in C, Robert Kruse, Pearson Education Asia
- 2. An introduction to Data Structures with applications, Trembley & Sorenson, McGraw Hill
- 3. The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Donald E Knuth, Addison-Wesley, 1997.
- 4. Data Structures using C&C++:Langsam, Augenstein & Tanenbaum, Pearson, 1995
- 5. Algorithms +Data Structures & Programs:, N.Wirth, PHI
- 6. Fundamentals of Data Structures in C++:Horowitz Sahni & Mehta, Galgottia Pub.
- 7. Data structures in Java:, Thomas Standish, Pearson Education Asia

Online Learning Resources:

- 1. https://www.tutorialspoint.com/advanced_data_structures/index.asp
- 2. http://peterindia.net/Algorithms.html
 Abdul Bari, Introduction to Algorithms (youtube.com)

SUBCODE:		OBJECT ORIENTED PROGRAMMING THROUGH JAVA									
1 SEMESTER	3	-	-	30	70	100	3				
II B.TECH I SEMESTER	L	T	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS				

COURSE OBJECTIVES:

The learning objectives of this course are to:

- Identify Java language components and how they work together in applications
- Learn the fundamentals of object-oriented programming in Java, including defining classes, invoking methods, using class libraries.
- Learn how to extend Java classes with in heritance and dynamic binding and how to use exception handling in Java applications
- Understand how to design applications with threads in Java
- Understand how to use Java APIs for program development

COURSE OUTCOMES

At the end of the Course/Subject, the students will be able to:

CO1: Realize Java Concepts

CO2: Make use of the OOP's concepts in solving real world problems.

CO3: Apply the concept of Arrays and Implement a solution using Inheritance for a given problem..

CO4: Realize packages and Exception handling concepts

CO5: Design GUI Applications with JAVAFX Scene Builder

SYLLABUS:

UNIT-I

Object Oriented Programming: Basic concepts, Principles, Program Structure in Java: Introduction, Writing Simple Java Programs, Elements or Tokens in Java Programs, Java Statements, Command Line Arguments, User Input to Programs, Escape Sequences Comments, Programming Style.

Data Types, Variables, and Operators :Introduction, Data Types in Java, Declaration of Variables, Data Types, Type Casting, Scope of Variable Identifier, Literal Constants, Symbolic Constants, Formatted Output with print f () Method, Static Variables and Methods, Attribute Final, **Introduction to Operators**, Precedence and Associativity of Operators, Assignment Operator (=), Basic Arithmetic Operators, Increment (++) and Decrement (--) Operators, Ternary Operator, Relational Operators, Boolean Logical Operators, Bitwise Logical Operators.

Control Statements: Introduction, if Expression, Nested if Expressions, if— else Expressions, Ternary Operator?:, Switch Statement, Iteration Statements, while Expression, do—while Loop, for Loop, Nested for Loop,

For—Each for Loop, Break Statement, Continue Statement.

UNIT-II

Classes and Objects: Introduction, Class Declaration and Modifiers, Class Members, Declaration of Class Objects, Assigning One Object to Another, Access Control for Class Members, Accessing Private Members of Class, Constructor Methods for Class, Overloaded Constructor Methods, Nested Classes, Final Class and Methods, Passing Arguments by Value and by Reference, Keyword this.

Methods: Introduction, Defining Methods, Overloaded Methods, Overloaded Constructor Methods, Class Objects as Parameters in Methods, Access Control, Recursive Methods, Nesting of Methods, Overriding Methods, Attributes Final and Static.

UNIT-III

Arrays: Introduction, Declaration and Initialization of Arrays, Storage of Array in Computer Memory, Accessing Elements of Arrays, Operations on Array Elements, Assigning Array to Another Array, Dynamic Change of Array Size, Sorting of Arrays, Search for Values in Arrays, Class Arrays, Two- dimensional Arrays, Arrays of Varying Lengths, Three-dimensional Arrays, Arrays as Vectors.

Inheritance: Introduction, Process of Inheritance, Types of Inheritances, Universal Super Class-Object Class, Inhibiting Inheritance of Class Using Final, Access Control and Inheritance, Multilevel Inheritance, Application of Keyword Super, Constructor Method and Inheritance, Method Overriding, Dynamic Method Dispatch, Abstract Classes, Interfaces and Inheritance.

Interfaces: Introduction, Declaration of Interface, Implementation of Interface, Multiple Interfaces, Nested Interfaces, Inheritance of Interfaces, Default Methods in Interfaces, Static Methods in Interface, Functional Interfaces, Annotations.

UNIT-IV

Packages and Java Library: Introduction, Defining Package, Importing Packages and Classes into Programs, Path and Class Path, Access Control, Packages in Java SE, Java. lang Package and its Classes, Class Object, Enumeration, class Math, Wrapper Classes, Auto-boxing and Auto-un boxing, Java util Classes and Interfaces, Formatter Class, Random Class, Time Package, Class Instant (java.time.Instant), Formatting for Date/Time in Java, Temporal Adjusters Class, Temporal Adjusters Class.

Exception Handling: Introduction, Hierarchy of Standard Exception Classes, Keywords throws and throw, try, catch, and finally Blocks, Multiple Catch Clauses, Class Throw able, Unchecked Exceptions, Checked Exceptions.

Java I/O and File:JavaI/OAPI, standard I/O streams, types, Byte streams, Character streams, Scanner class, Files in Java(Text Book 2)

UNIT-V

String Handling in Java: Introduction, Interface Char Sequence, Class String, Methods for Extracting Characters from Strings, Comparison, Modifying, Searching; Class String Buffer.

Multithreaded Programming: Introduction, Need for Multiple

Threads Multithreaded Programming for Multi-core Processor, Thread Class, Main Thread-Creation of New Threads, Thread States, Thread Priority- Synchronization, Deadlock and Race Situations, Inter-thread Communication - Suspending, Resuming, and Stopping of Threads.

Java FX GUI: Java FX Scene Builder, Java FX App Window Structure, displaying text and image, event handling, laying out nodes in scene graph, mouse events (Text Book 3)

TEXTBOOKS:

- 1) JAVA one stepahead, Anitha Seth, B.L. Juneja, Oxford.
- 2) Joy with JAVA, Fundamentals of Object Oriented Programming, Debas is Samanta, Monalisa Sarma, Cambridge, 2023
- 3) JAVA9forProgrammers,PaulDeitel, HarveyDeitel,4thEdition, Pearson.

REFERENCESBOOKS:

- 1) The complete Reference Java, 11th edition, Herbert Schildt, TMH
- 2) Introduction to Java programming,7thEdition, YDaniel Liang, Pearson

II B.TECH	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS			
I SEMESTER	-	-	3	30	70	100	1.5			
SUBCODE:	A	ADVANCED DATA STRUCTURES & ALGORITHM ANALYSIS LAB								

COURSE OBJECTIVES

The objectives of the course is to

- Acquire practical skills in constructing and managing Data structures
- Apply the popular algorithm design methods in problem-solving scenarios

COURSE OUTCOMES:

At the end of the course students will be able to

CO1: Analyze and Develop algorithms for AVL and B-Trees.

CO2:Develop Algorithms and programs for various sorting Techniques

CO3: Apply Graph search, Traversal algorithms.

CO4: Develop and apply the algorithm for Divide and Conquer & Greedy Method

CO5: Develop and apply the algorithm for dynamic programming and Back Tracking

SYLLABUS:

EXPERIMENTS COVERING THE TOPICS

- Operations on AVL trees, B-Trees, Heap Trees
- Graph Traversals
- Sorting techniques
- Minimum cost spanning trees
- Shortest path algorithms
- 0/1KnapsackProblem
- Travelling Salesperson problem
- Optimal Binary Search Trees
- N-Queens Problem
- Job Sequencing

Sample programs

- 1. Construct an AVL tree for a given set of elements which are stored in a file. And implement insert and delete operation on the constructed tree. Write contents of tree into a new file using in-order.
- 2. Construct B-Treean order of 5 with a set of 100 random elements stored in array. Implement searching, insertion and deletion operations.
- 3. Construct Min and Max Heap using arrays, delete any element and display the content of the Heap.

- 4. Implement BFT and DFT for given graph, when graph is represented by
 - a) Adjacency Matrix b) Adjacency Lists
- 5. Write a program for finding the bi connected components in a given graph.
- 6. Implement Quick sort and Merge sort and observe the execution time for various input sizes (Average, Worst and Best cases).
- 7. Compare the performance of Single Source Shortest Paths using Greedy method when the graph is represented by adjacency matrix and adjacency lists.
- 8. Implement Job Sequencing with deadlines using Greedy strategy.
- 9. Write a program to solve 0/1 Knapsack problem Using Dynamic Programming.
- 10. Implement N-Queens Problem Using Backtracking.
- 11. UseBacktrackingstrategytosolve0/1Knapsackproblem.
- 12. Implement Travelling Sales Person problem using Branch and Bound approach.

REFERENCE BOOKS:

- 1. Fundamentals of Data Structures in C++, Horowitz Ellis, Sahni Sartaj, Mehta, Dinesh, 2nd Edition, Universities Press
- 2. Computer Algorithms/C++Ellis Horowitz Sartaj Sahni,Sanguthevar Rajasekaran, 2nd Edition, University Press
- 3. Data Structures and program design in C,Robert Kruse, Pearson Education Asia
- 4. An introduction to Data Structures with applications, Trembley & Sorenson, McGraw Hill

ONLINELEARNINGRESOURCES

- 1. http://cse01-iiith.vlabs.ac.in/
- 2. http://peterindia.net/Algorithms.html

II B.TECH I SEMESTER	L 0	T	P 2	INTERNAL MARKS 30	MARKS 70	TOTAL MARKS 100	CREDITS 2				
SUBCODE:		OBJECT ORIENTED PROGRAMMING THROUGH JAVA LAB									

COURSE OBJECTIVES

The aim of this course is to

- Practice object oriented programming in the Java programming language
- Implement Classes, Objects, Methods, Inheritance, Exception, Runtime Polymorphism, User defined Exception handling mechanism
- Illustrate inheritance, Exception handling mechanism, JDBC connectivity
- Construct Threads, Event Handling, implement packages, Java FX GUI

COURSE OUTCOMES:

At the end of the course students will be able to

CO1: Develop searching and sorting techniques in Java

CO2: Make use of the OOP's methods and constructors for real time problems.

CO3: Apply the concept of Inheritance and polymorphism to solve real time problems

CO4: Develop threads and Exception handling

CO5: Design GUI Applications by using JAVAFX Scene Builder

SYLLABUS:

Experiments covering the Topics:

- Object Oriented Programming fundamentals-datatypes, control structures
- Classes, methods, objects, Inheritance, polymorphism,
- Exception handling, Threads, Packages, Interfaces
- Files, I/O streams, Java FXGUI

Sample Experiments:

Exercise-1:

- a) Write a JAVA program to display default value of all primitive data type of JAVA
- b) Write a java program that display the roots of a quadratic equation $ax^2+bx=0$. Calculate the discriminate D and basing on value of D, describe the nature of root.

Exercise-2

- a) Write a JAVA program to search for an element in a given list of elements using binary search mechanism.
- b) Write a JAV A program to sort for an element in a given list of

elements using bubble sort

c) Write a JAVA program using String Buffer to delete, remove character.

Exercise-3

- a) Write a JAVA program to implement class mechanism. Create a class, methods and invoke them inside main method.
- b) Write a JAVA program implement method overloading.
- c) Write a JAVA program to implement constructor.
- d) Write a JAVA program to implement constructor overloading.

Exercise-4

- a) Write a JAVA program to implement Single Inheritance
- b) Write a JAVA program to implement multilevel Inheritance
- c) Write a JAVA program for abstract class to find areas of different shapes

Exercise-5

- a) Write a JAVA program give example for "super" keyword.
- b) Write a JAVA program to implement Interface. What kind of Inheritance can be achieved?
- c) Write a JAVA program that implements Runtime polymorphism

Exercise-6

- a) Write a JAVA program that describes exception handling mechanism
- b) Write a JAVA program Illustrating Multiple catch clauses
- c) Write a JAVA program for creation of Java Built-in Exceptions
- d) Write a JAVA program for creation of User Defined Exception

Exercise-7

- a) Write a JAVA program that creates thread sby extending Thread class. First thread display "Good Morning "every 1 sec, the second thread displays "Hello "every 2 seconds and the third display "Welcome" every 3 seconds, (Repeat the same by implementing Runn able)
- b) Write a program illustrating is Alive and join()
- c) Write a Program illustrating Daemon Threads.
- d) Write a JAVA program Producer Consumer Problem

Exercise-8

- a) Write a JAVA program that import and use the user defined packages
- b) Without writing any code, build a GUI that display text in label and image in an Image View (use JavaFX)
- c) Builda Tip Calculator app using several Java FX components and learn how to respond to user interactions with the GUI

Exercise-9

- a) Write a java program that connects to a database using JDBC
- b) Write a java program to connect to a database using JDBC and insert value In to it.
- c) Write a java program to connect to a database using JDBC and delete
 - values from it

II B.TECH I SEMESTER	L	Т	P	INTERNAL MARKS	MARKS	TOTAL MARKS	CREDITS				
	-	1	2	30	70	100	2				
SUBCODE:		PYTHON PROGRAMMING (SEC)									

COURSE OBJECTIVES:

The main objectives of the course are to

- Introduce core programming concepts of Python programming language.
- Demonstrate about Python data structures like Lists, Tuples, Sets and dictionaries
- Implement Functions, Modules and Regular Expressions in Python Programming and to create practical and contemporary applications using these

COURSE OUTCOMES:

At the end of the course students will be able to

- **CO1**: Develop Essential programming skills for python and be fluent in the use of python control flow statements
- **CO2:** Solve coding tasks related to the handling of strings and functions
- **CO3:** Make use of functions and represent compound data using Lists, Tuples and dictionaries
- **CO4:** Apply the commonly used operations involving file systems and regular expressions
- **CO5:** Analyze the functional programming using JSON and XML in python and utilization of packages Numpy and Pandas

SYLLABUS:

UNTI-I

History of Python Programming Language, Thrust Areas of Python, Installing Anaconda Python Distribution, Installing and Using Jupyter Notebook. Parts of Python Programming Language: Identifiers, Keywords, Statements and Expressions, Variables, Operators, Precedence and Associativity, Data Types, Indentation, Comments, Reading Input, Print Output, Type Conversions, the type()Function and Is Operator, Dynamic and Strongly Typed Language. Control Flow Statements: if statement, if-else statement, if...elif...else, Nested if statement, while Loop, for Loop, continue and break Statements, Catching Exceptions Using try and except Statement.

Sample Experiments

- 1. Write a program to find the largest element among three Numbers.
- 2. Write a Program to display all prime numbers within an interval
- 3. Write a program to swap two numbers without using a temporary

variable.

- 4. Demonstrate the following Operators in Python with suitable examples.
 - i) Arithmetic Operators ii) Relational Operators iii) Assignment Operators
 - iv) Logical Operators v) Bitwise Operators vi) Ternary Operator
 - vii) Membership Operators viii) Identity Operators
- 5. Write a program to add and multiply complex numbers
- 6. Write a program to print multiplication table of a given number.

UNIT-II

Functions: Built-In Functions, Commonly Used Modules, Function Definition and Calling the function, return Statement and void Function, Scope and Life time of Variables, Default Parameters, Keyword Arguments, *args and**kwargs, Command Line Arguments. Strings: Creating and Storing Strings, Basic String Operations, Accessing Characters in String by Index Number, String Slicing and Joining, String Methods, Formatting Strings. Lists: Creating Lists, Basic List Operations, Indexing and Slicing in Lists, Built-In Functions Used on Lists, List Methods, del Statement.

Sample Experiments

- 1. Write a program to define a function with multiple return values.
- 2. Write a program to define a function using default arguments.
- 3. Write a program to find the length of the string without using any library functions.
- 4. Write a program to check if the substring is present in a given string or not.
- 5. Write a program to perform the given operations on a list:
 - i. Addition ii. in sertion iii. slicing
- 6. Write a program to perform any 5built-infunctions by taking any list.

UNIT-III

Dictionaries: Creating Dictionary, Accessing and Modifying key: value Pairs in Dictionaries, Built-In Functions Used on Dictionaries, Dictionary Methods, del Statement. Tuples and Sets: Creating Tuples, Basic Tuple Operations, tuple() Function, Indexing and Slicing in Tuples, Built-In Functions Used on Tuples, Relation between Tuples and Lists, Relation between Tuples and Dictionaries, Using zip() Function, Sets, Set Methods, Frozenset.

Sample Experiments:

- 1. Write a program to create tuples (name, age, address, college) for at least two members and concatenate the tuples and print the concatenated tuples.
- 2. Write a program to count the number of vowels in a string (No control flow allowed).
- 3. Write a program to check if a given key exists in a dictionary or not.
- 4. Write a program to add a new key-value pair to an existing dictionary.
- 5. Write a program to sum all the items in a given dictionary.

UNIT-IV

Files: Types of Files, Creating and Reading Text Data, File Methods to Read and Write Data, Reading and Writing Binary Files, Pickle Module, Reading and Writing CSV Files, Python os and os.path Modules.

Object-Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, Constructor Method, Classes with Multiple Objects, Class Attributes Vs Data Attributes, Encapsulation, Inheritance, Polymorphism.

Sample Experiments

- 1. Write a program to sort word sin a file and put the min another file. The output file should have only lower-case words, so any upper-case words from source must be lowered.
- 2. Python program to print each line of a file in reverse order.
- 3. Python program to compute the number of characters, words and lines in a file.
- 4. Write a program to create, display, append, in sert and reverse the i. Order of the items in the array.
- 5. Write a program to add, transpose and multiply two matrices.
- 6. Write a Python program to create a class that represents a shape. Include methods to calculate its area and perimeter. Implement sub classes for different shapes like circle, triangle, and square.

UNIT-V

Introduction to Data Science: Functional Programming, JSON and XML in Python, NumPy with Python, Pandas.

Sample Experiments:

- 1. Python program to check whether a JSON string contains complex object or not.
- 2. Python Program to demonstrate NumPy arrays creation using array() function.
- 3. Python program to demonstrate use of ndim, shape, size, dtype.
- 4. Python program to demonstrate basic slicing ,integer and Boolean indexing.
- 5. Python program of indm in,max,sum, cumulative Sum of array
- 6. Create a diction nary with at least five keys and each key represent value as a list where this list contains at least ten values and convert this dictionary as a pandas data frame and explore the data through the data frame as follows:
- 7. Apply head() function to the pandas data frame
- 8. Perform various data selection operation son Data Frame
- 9. Select any two columns from the above data frame, and observe the change in one at tribute with respect to other at tribute with scatter and plot operations in matplotlib

REFERENCEBOOKS

- 1. Gowrishankar S, VeenaA., Introduction to Python Programming, CRC Press.
- 2. Python Programming, S Sridhar, JIndumathi, V M Hariharan, 2nd Edition, Pearson, 2024
- 3. Introduction to Programming Using Python, Y.Daniel Liang, Pearson.

Online Learning Resources/ Virtual Labs

- 1. https://www.coursera.org/learn/python-for-applied-data-science-ai
- 2. https://www.coursera.org/learn/python?specialization=python#syllabus

II B.TECH SEMISTER-II

S.N o.	Subject Code	SUBJECT	Cat. Code	INTERNA L MARKS	EXTERNA L MARKS	TOTAL MARKS	L	Т	P	CRE DITS
1		Managerial Economics and Financial Analysis	MC-1	30	70	100	2	0	0	2
2		Probability &Statistics	ES	30	70	100	3	0	0	3
3		Operating Systems	PC	30	70	100	3	0	0	3
4		Database Management Systems	PC	30	70	100	3	0	0	3
5		Software Engineering	PC	30	70	100	2	1	0	3
6		Operating Systems Lab	PC	30	70	100	0	0	3	1.5
7		Database Manageme nt Systems Lab	PC	30	70	100	0	0	3	1.5
8		Full Stack Development–I	SEC	30	70	100	0	1	2	2
9		Design Thinking & Innovation	BS&H	30	70	100	1	0	2	2
	,	Total					14	2	10	21

=	II SEMESTER SUBCODE:	3	-	-	MARKS 30	MARKS 70 FING SYST	MARKS 100	3
	II B.TECH	L	T	P	INTERNAL	EXTERNAL	TOTAL	CREDITS

COURSE OBJECTIVES

The main objectives of the course is to make student

- Understand the basic concepts and principles of operating systems, including process management, memory management, file systems, and Protection
- Make use of process scheduling algorithms and synchronization techniques to achieve better performance of a computer system.
- Illustrate different conditions for deadlock and their possible solutions.

COURSE OUTCOMES:

At the end of the course students will be able to

- **CO1**: Make use of Different operating System Services and Implement System calls for the Services
- **CO2:** Examine Different types of Algorithms for Process Scheduling and Compare the Scheduling Criteria
- **CO3:** Organize Different Synchronization Tools for Concurrency and use Different Mechanisms for Deadlock free
- CO4: Organize Different Memory Management Strategies and Operate Different Algorithms Storage structure,
- CO5: Organize File System management and Different File System protection Mechanisms

SYLLABUS:

UNIT-I

Operating Systems Overview: Introduction, Operating system functions, Operating systems operations, Computing environments, Free and Open- Source Operating Systems System Structures: Operating System Services, User and Operating-System Interface, system calls, Types of System Calls, system programs, Operating system Design and Implementation, Operating system structure, Building and Booting an Operating System, Operating system debugging

UNIT-II

Processes: Process Concept, Process scheduling, Operations on processes, Inter-process communication. Threads and Concurrency: Multithreading models, Thread libraries, Threading issues. CPU Scheduling: Basic concepts, Scheduling criteria, Scheduling algorithms, Multiple processor scheduling.

UNIT-III

Synchronization Tools: The Critical Section Problem, Peterson's Solution, Mutex Locks, Semaphores, Monitors, Classic problems of Synchronization. Deadlocks: system Model, Deadlock haracterization, Methods for handling Deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from Deadlock.

UNIT-IV

Memory-Management Strategies: Introduction, Contiguous memory allocation, Paging, Structure of the Page Table, Swapping. Virtual Memory Management: Introduction, Demand paging, Copy-on-write, Page replacement, Allocation of frames, Thrashing Storage Management: Overview of Mass Storage Structure, HDD Scheduling.

UNIT-V

File System: File System Interface: File concept, Access methods, Directory Structure; File system Implementation: File-system structure, File-system Operations, Directory implementation, Allocation method, Frees pace management; File-System Internals: File-System Mounting, Partitions and Mounting, File Sharing.

TEXTBOOKS

- 1. Operating System Concepts, Silbers chatzA, GalvinPB, GagneG, 10thEdition, Wiley, 2018.
- 2. ModernOperatingSystems,TanenbaumAS,4thEdition, Pearson, 2016

REFERENCEBOOKS

- 1. OperatingSystems-InternalsandDesignPrinciples,StallingsW,9th edition, Pearson, 2018
- 2. OperatingSystems:AConceptBasedApproach,D.MDhamdhere,3^r d Edition, McGraw- Hill, 2013

Online Learning Resources

https://nptel.ac.in/courses/106/106/106106144/http://peterindia.net/OperatingSystems.html

II B.TECH II SEMESTER	1 L 3	T -	P -	INTERNAL MARKS 30	EXTERNAL MARKS 70	TOTAL MARKS	CREDITS 3
SUBCODE:	DATABASEMANAGEMENT SYSTEMS						

COURSE OBJECTIVES:

The main objectives of the course is to

- Introduce database management systems and to give a good formal foundation on the relational model of data and usage of Relational Algebra
- Introduce the concepts of basic SQL as a universal Database language
- Demonstrate the principles behind systematic database design approaches by covering conceptual design, logical design through normalization
- Provide an overview of physical design of a database system, by discussing Database indexing techniques and storage techniques

COURSE OUTCOMES:

At the end of the course, the students will be able to:

CO1: Utilize various fundamentals of DBMS.

CO2: Apply different relational database using SQL.

CO3: Develop Queries in RDBMS.

CO4: Analyze different levels of normal forms and normalization.

CO5: Analyze various transaction properties and indexing techniques

SYLLABUS:

UNIT-I

Introduction: Database system, Characteristics (Database Vs File System), Database Users, Advantages of Database systems, Database applications. Brief introduction of different Data Models; Concepts of Schema, Instance and data independence; Three tier schema architecture for data independence; Database system structure, environment, Centralized and Client Server architecture for the database. Entity Relationship Model: Introduction, Representation of entities, attributes, entity set, relationship, relationship set, constraints, sub classes, super class, inheritance, specialization, generalization using ER Diagrams.

UNIT-II

Relational Model: Introduction to relational model, concepts of domain, attribute, tuple, relation, important ceofnull values, constraints (Domain, Key constraints, integrity constraints) and their importance, Relational Algebra, Relational Calculus. BASICSQL: Simple Database schema, data types, table definitions (create, alter), different DML operations (insert,

delete, update).

UNIT-III

SQL: Basic SQL querying(select and project) using where clause, arithmetic & logical operations, SQL functions(Date and Time, Numeric, String conversion). Creating tables with relationship, implementation of key and integrity constraints, nested queries, sub queries, grouping, aggregation, ordering, implementation of different types of joins, view(updatable and non- updatable), relational set operations.

UNIT-IV

Schema Refinement (Normalization):Purpose of Normalization or schema refinement, concept of functional dependency, normal forms based on functional dependency Lossless join and dependency preserving decomposition, (1NF,2NFand3NF), concept of surrogate key, Boyce-Codd Normal form (BCNF),MVD, Fourth normal form (4NF), Fifth Normal Form (5NF).

UNIT-V

Transaction Concept: Transaction State, ACID properties, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for Serializability, lock based, time stamp based, optimistic, concurrency protocols, Deadlocks, Failure Classification, Storage, Recovery and Atomicity, Recovery algorithm. Introduction to Indexing Techniques: B+ Trees, operations on B+Trees, Hash Based Indexing:

TEXT BOOKS:

- 1) DatabaseManagementSystems, 3rdedition, Raghurama Krishnan, Johannes Gehrke, TMH (For Chapters 2, 3, 4)
- 2) Database System Concepts,5thedition, Silberschatz, Korth, Sudarsan, TMH (For Chapter 1 and Chapter 5)

REFERENCE BOOKS:

- 1) IntroductiontoDatabaseSystems,8thedition, CJDate, Pearson.
- 2) DatabaseManagementSystem,6thedition, RamezElmasri, Shamkant B.Navathe, Pearson
- 3) Database Principles Fundamentals of Design Implementation and Management, Corlos Coronel, Steven Morris, Peter Robb, Cengage Learning.

Web-Resources

- 1) https://nptel.ac.in/courses/106/105/106105175/
- 2) https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01275806667282022456 shared/overview

II B.TECH	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS	
II SEMESTER	3	-	-	30	70	100	3	
SUBCODE:	SOFTWARE ENGINEERING							

COURSE OBJECTIVES:

The objectives of this course are to introduce

- Software life cycle models, Soft ware requirements and SRS document.
- Project Planning, quality control and ensuring good quality software.
- Software Testing strategies, use of CASE tools, Implementation issues, validation & verification procedures.

COURSE OUTCOMES

At the end of the Course/Subject, the students will be able to:

CO1: Identify the suitable Software Life cycle models in Software Engineering

CO2: Analyze the software management and requirements specifications of the SRS Documents

CO3: Analyze various design and Development solutions for Software Project

CO4: Compare and assess Various Testing and Quality management techniques

CO5: Analyze the concepts of CASE and software maintenance concepts

SYLLABUS:

UNIT-I

Introduction: Evolution, Software development projects, Exploratory style of software developments, Emergence of software engineering, Notable changes in software development practices, Computer system engineering.

Software Life Cycle Models: Basic concepts, Waterfall model and its extensions, Rapid application development, Agile development model, Spiral model.

UNIT-II

Software Project Management: Software project management complexities, Responsibilities of a software project manager, Metrics for project size estimation, Project estimation techniques, Empirical Estimation techniques, COCOMO, Halstead's software science, risk management.

Requirements Analysis And Specification: Requirements gathering and analysis, Software Requirements Specification (SRS), Formal system specification, Axiomatic specification, Algebraic specification, Executable specification and 4GL.

UNIT-III

Software Design: Overview of the design process, How to characterize a good software design? Layered arrangement of modules, Cohesion and

Coupling. Approaches to software design.

Agility: Agility and the Cost of Change, Agile Process, Extreme Programming (XP), Other Agile Process Models.

Function Oriented Software Design: Overview of SA/SD methodology, Structured analysis.

User Interface Design: Characteristics of a good user interface, Basic concepts, Types of user interfaces, Fundamentals of component-based GUI development, and user interface design methodology.

UNIT-IV

Coding And Testing: Coding, Code review, Software documentation, Testing, Black-box testing, White-Box testing, Debugging, Program analysis tools, Integration testing, Testing object-oriented programs, Some general issues associated with testing.

Software Reliability And Quality Management: Software reliability. Statistical testing, Software quality, Software quality management system, ISO 9000. SEI Capability maturity model. Few other important quality standards, and Six Sigma.

UNIT-V

Computer-Aided Software Engineering (Case): CASE and its scope, CASE environment, CASE support in the software lifecycle.

Software Maintenance: Characteristics of software maintenance, Software maintenance process models and Estimation of maintenance cost.

Software Reuse: reuse- definition, introduction, reason behind no reuse so far, Basic issues in any reuse program,

TEXTBOOKS:

- 1. Fundamentals of Software Engineering, RajibMall, 5thEdition, PHI.
- 2. Software Engineering A practitioner's Approach, RogerS. Pressman, 9th Edition, Mc-Graw Hill International Edition.

REFERENCEBOOKS:

- 1. Software Engineering, Ian So mmerville, 10thEdition, Pearson.
- 2. Software Engineering, Principles and Practices, Deepak Jain, Oxford University Press.

e-Resources:

- 1) https://nptel.ac.in/courses/106/105/106105182/
- 2) https://infyspringboard.onwingspan.com/web/en/app/toc/lex_aut h_01260589506387148827_shared/overview
- 3) https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013382690411003904735_shared/overview

II B.TECH II SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS	
II SEMESTER	-	-	3	30	70	100	1.5	
SUBCODE:	OPERATING SYSTEMS LAB							

COURSE OBJECTIVES:

- Provide in sights into system calls, file systems, semaphores,
- Develop and debug CPUS cheduling algorithms, page replacement algorithms, thread implementation
- Implement Bankers Algorithms to Avoid the Dead Lock

COURSE OUTCOMES:

At the end of the course, the students will be able to:

CO1: Ability to develop application programs using system calls in UNIX.

CO2: Able to Build shell program for process and file system management with system calls

CO3: Construct modules for deadlock detection and deadlock avoidance.

CO4: Construct modules for storage management and disk schedule

SYLLABUS:

Experiments covering the Topics:

- UNIX fundamentals, commands & system calls
- CPUS cheduling algorithms, thread processing
- IPC, semaphores, monitors, deadlocks
- Page replacement algorithms, file allocation strategies
- Memory allocation strategies

Sample Experiments

- 1. Practicing of Basic UNIX Commands.
- 2. Write programs using the following UNIX operating system calls fork, exec, getpid, exit, wait, close, stat, open dirand readdir
- 3. Simulate UNIX commands likecp, ls,grep,etc.,
- 4. Simulate the following CPU scheduling algorithms
 - a) FCFS b)SJF c)Priority d) Round Robin
- 5. Control the number of ports opened by the operating system with
 - a) Semaphore b) Monitors.
- 6. Write a program to illustrate concurrent execution of threads using pthreads library.
- 7. Write a program to solve producer-consumer problem using Semaphores.
- 8. Implement the following memory allocation methods for fixed partition
 - a) First fit b) Worst fit c) Best fit
- 9. Simulate the following page replacement algorithms
 - a) FIFO b)LRU c)LFU
- 10. Simulate Paging Technique of memory management.

- 11. Implement Bankers Algorithm for Dead Lock avoidance and prevention
- 12. Simulate the following file allocation strategies
 - a) Sequential b)Indexed c)Linked
- 13. Download and install llnachos operating system and experiment with it

REFERENCEBOOKS

- 1. Operating System Concepts, SilberschatzA, GalvinPB, GagneG,10th Edition, Wiley, 2018.
- 2. ModernOperatingSystems, TanenbaumAS, 4thEdition, Pearson, 2016
- 3. OperatingSystems-InternalsandDesignPrinciples,StallingsW,9th edition, Pearson, 2018
- 4. OperatingSystems:AConceptBasedApproach,D.MDhamdhere,3r d Edition, McGraw- Hill, 2013

Online Learning Resources

- 1. https://www.cse.iitb.ac.in/~mythili/os/
- 2. http://peterindia.net/OperatingSystems.html
- 3. www.cs.washington.edu/~tom/nachos

II B.TECH II SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS	
II beliles I ek	-	-	3	30	70	100	1.5	
SUBCODE:	DATABASE MANAGEMENT SYSTEMS LAB							

COURSE OBJECTIVES:

This Course will enable students to

- Populate and query a data base using SQLDDL/DML Commands
- Declare and enforce integrity constraints on a database
- Writing Queries using advanced concepts of SQL
- Programming PL/SQL including procedures, functions, cursors and triggers

COURSE OUTCOMES:

At the end of the course, the students will be able to

CO1: Utilize SQL to execute queries for creating database and performing data manipulation operations

CO2: Examine integrity constraints to build efficient databases

CO3: Apply Queries using Advanced Concepts of SQL

CO4: Explain PL/SQL programs including stored procedures, functions, cursors and triggers

CO5: Construct Database connectivity- ODBC/JDBC

SYLLABUS:

Experiments covering the topics:

- DDL,DML,DCL commands
- Queries, nested queries, built-in functions,
- PL/SQL programming-control structures
- Procedures, Functions, Cursors, Triggers,
- Data base connectivity-ODBC/JDBC

Sample Experiments:

- 1. Creation, altering and droping of tables and inserting rows into a table (use constraints while creating tables) examples using SELECT command.
- 2. Queries (along with sub Queries) using ANY, ALL, IN, EXISTS, NOTEXISTS, UNION, INTERSET, Constraints. Example:-Select the roll number and name of the student who secured fourth rank in the class.
- 3. Queries using Aggregate functions (COUNT, SUM, AVG, MAX and MIN), GROUP BY, HAVING and Creation and dropping of Views.
- 4. Queries using Conversion functions (to char, to number and to

date), string functions (Concatenation, lpad, rpad, ltrim, rtrim, lower, upper, in it cap, length, substr and instr), date functions (Sysdate, next_day, add_months, last_day, months_between, least, greatest, trunc, round, to_char, to_date)

- i. Create a simple PL/SQL program which includes declaration section, executable section and exception —Handling section (Ex. Student marks can be selected from the table and printed for those who secured first class and an exception can be raised if no records were found)
- ii. Insert data into student table and use COMMIT, ROLLBACK and SAVEPOINT in PL/SQL block.
- 5. Develop a program that includes the features NESTED IF, CASE and CASE expression. The program can be extended using the NULLIF and COALESCE functions.
- 6. Program development using WHILE LOOPS, numeric FOR LOOPS, nested loops using ERROR Handling, BUILT –IN Exceptions, USE defined Exceptions, RAISE- APPLICATION ERROR.
- 7. Programs development using creation of procedures, passing parameters IN and out of PROCEDURES.
- 8. Program development using creation of stored functions, invoke functions in SQL Statements and write complex functions.
- 9. Develop Programs Using Features Parameters In A Cursor, For Update Cursor, Where Current of Clause And Cursor Variables.
- 10. Develop Programs using BEFORE and AFTER Triggers, Row and Statement Triggers and INSTEAD OF Triggers
- 11. Create at able and perform the search operation on table using indexing and non-indexing techniques.
- 12. Write a Java program that connects to a database using JDBC
- 13. Write a Java program to connect to a database using JDBC and insert values into it
- 14. Write a Java program to connect to a database using JDBC and delete values from it

TEXT BOOKS / SUGGESTED READING

- 1. Oracle: The Complete Reference by Oracle Press
- 2. NileshShah, "DatabaseSystemsUsingOracle", PHI, 2007
- 3. RickF Vander Lans, "Introduction to SQL", Fourth Edition, Pearson Education, 2007

II B.TECH II SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS	
II SEMESTER	-	1	2	30	70	100	2	
SUBCODE:	FULL STACK DEVELOPMENT-1 (SEC)							

COURSE OBJECTIVES:

The main objectives of the course are to

- Make use of HTML elements and their attributes for designing static web pages
- Build a web page by applying appropriate CSS styles to HTML elements
- Experiment with Java Script to develop dynamic web pages and validate forms

COURSE OUTCOMES:

At the end of the course students will be able to

CO1: Develop responsive web pages using HTML and CSS

CO2: Implement client side script using Java script

CO3: Develop real world web application using varies technology

CO4: Develop server side script using PHP and node JS

SYLLABUS:

Experiments covering the Topics:

- Lists, Links and Images
- HTML Tables, Forms and Frames
- HTML5andCascadingStyleSheets,TypesofCSS
- Selector forms
- CSS with Color, Background, Font, Text and CSS Box Model
- Applying Java Script-internal and external, I/O, Type Conversion
- Java Script Conditional Statements and Loops, Pre-defined and User- defined Objects
- Java Script Functions and Events
- Node.js

Sample Experiments:

1. Lists, Links and Images

- a. Write a HTML program, to explain the working of lists.
 - Note: It should have an ordered list, unordered list, nested lists and ordered list in an un ordered list and definition lists.
- b. Write a HTML program, to explain the working of hyper links using<a>tag and h ref, target Attributes.
- c. Create a HTML document that has your image and your friend's image with a specific eight and width. Also when clicked on the images it should navigate to their respective profiles.
- d. Write a HTML program, in such away that, rather than placing large images on a page, the preferred technique is to use thumb nails by

setting theheightandwidthparameters to something like to 100*100 pixels. Each thumb nail image is also a link to a full sized version of the image. Creat ean image gallery using this technique

2. HTML Tables, Forms and Frames

- a. Write a HTML program, to explain the working of tables.(use tags: ,,,and attributes: border, row span, cols pan)
- b. Write a HTML program, to explain the working of tables by preparing a timetable. (Note: Use<caption> tag to set the caption to the table& also use cell spacing, cell padding, border, row span, colspan etc.).
- c. Write a HTML program, to explain the working of forms by designing Registrationform.(Note:Includetextfield,passwordfield,numberfield, Date of birth field, check boxes, radio buttons, list boxes using <select>&<option> tags,<text area> and two buttons ie: submit and reset. Use tables to provide a better view).
- d. Write a HTML program, to explain the working of frames, such that pageis to be divided into 3 parts on either direction. (Note: first frame image, second frame paragraph, third frame hyperlink. And also make sure of using "no frame" attribute such that frames to be fixed).

3. HTML5andCascadingStyleSheets,TypesofCSS

- a. Write a HTML program, that makes use of<article>,<aside>,<figure>, <figcaption>,<footer>,<header>,<main>,<nav>,<section>,<div>, tags.
- b. Write a HTML program, to embed audio and video into HTML webpage.
- c. Write a program to apply different types (or levels of styles or style specification formats) inline, internal, external styles to HTML elements. (identify selector, property and value).

4. Selector forms

- a. Write a program to apply different types of selector forms
 - i. Simple selector(element,id,class,group,universal)
 - ii. Combinator selector(descendant, child, adjacent sibling, general sibling)
 - iii. Pseudo-class
 - selector
 - iv. Pseudo-element
 - selector
 - v. Attribute selector

5. CSS with Color, Background, Font, Text and CSS Box Model

- a. Write a program to demonstrate the various ways you can reference a color in CSS.
- b. Write a CSS rule that places a background image halfway down the page, tilting it horizontally. The image should remain in place when the user scrolls up or down.
- c. Write a program using the following terms related to CSS font and text:
 - i. font-size ii.font-weight iii.font-style
 - iv. text-decoration v. text-trans formation vi. text-alignment
- d. Write a program, to explain the import an coof CSS Box model using

i. Content ii.Border iii.Margin iv.padding

6. Applying JavaScript-internal and external, I/O, Type Conversion

- a. Write a program to embed internal and external Java Script in a webpage.
- b. Write a program to explain the different ways for displaying output.
- c. Write a program to explain the different ways for taking input.
- d. Create a webpage which uses prompt dialogue box to ask a voter for his name and age. Display the information in table format along with either the voter can vote or not

7. Java Script Pre-defined and User-defined Objects

- a. Write a program using document object properties and methods.
- b. Write a program using window object properties and methods.
- c. Write a program using array object properties and methods.
- d. Write a program using math object properties and methods.
- e. Write a program using string object properties and methods.
- f. Write a program using regex object properties and methods.
- g. Write a program using date object properties and methods.
- h. Write a program to explain user-defined object by using properties, methods, accessors, constructors and display.

8. Java Script Conditional Statements and Loops

- a. Write a program which asks the user to enter three integers, obtains the numbers from the user and outputs HTML text that displays the larger number followed by the words "LARGER NUMBER" in an information message dialog. If the numbers are equal, output HTML text as "EQUAL NUMBERS".
- b. Write a program to display week days using switch case.
- c. Write a program to print 1 to 10 numbers using for, while and do-while loops.
- d. Write a program to print data in object using for-in, for-each and for-of loops
- e. Develop a program to determine whether a given number is an 'ARMSTRONG NUMBER' or not. [Eg: 153 is an Armstrong number, since sumofthecubeofthedigitsisequaltothenumberi.e.,13+53+33= 153]
- f. Write a program to display the denomination of the amount deposited in the bank in terms of 100's, 50's, 20's, 10's, 5's, 2's& 1's. (Eg: If deposited amountisRs.163,theoutputshouldbe1-100's,1-50's,1-10's,1-2's&1-1's)

9. Java Script Functions and Events

- a. Design a appropriate function should be called to display
 - i. Factorial of that number
 - ii. Fibon acciseries up to that number
 - iii. Prime numbers up to that number
 - iv. Isitpalin drome or not
- b. Design a HTML having a text box and four buttons named Factorial, Fibonacci, Prime, and Palindrome. When a button is pressed an appropriate function should be called to display
 - i. Factorial of that number

- ii. Fibon acciseries up to that number
- iii. Prime numbers up to that number
- iv. Isitpalin drome or not
- c. Write a program to validate the following fields in a registration page
 - i. Name(start with alphabet and followed by alphanumeric and the length should not be less than 6 characters)
 - ii. Mobile(onlynumbersandlength10digits)
 - iii. E-mail(shouldcontainformatlikexxxxxxx@xxxxxxxxxxx)

TEXTBOOKS:

- 1. ProgrammingtheWorldWideWeb,7thEdition, RobetWSebesta, Pearson, 2013.
- 2. WebProgrammingwithHTML5,CSSandJavaScript,JohnDean,Jones &BartlettLearning,2019(Chapters1-11).
- 3. Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node, Vasan Subramanian, 2ndedition, APress, O'Reilly.

WEBLINKS:

- 1. https://www.w3schools.com/html
- 2. https://www.w3schools.com/css
- 3. https://www.w3schools.com/js/
- 4. https://www.w3schools.com/nodejs

III B.Tech (CSE) COURSE STRUCTURE (R23)

1 SEMESTER

S. No	Subject Code	SUBJECT	Cat. Code	INTERNAL MARKS	EXTER NAL MARKS	TOTAL MARKS	L	Т	P	CR EDI TS
1	B23CS51	Data Wares housing and Data Mining	PC	30	70	100	3	0	0	3
2	B23CS52	Computer Networks	PC	30	70	100	3	0	0	3
3	B23CS53	Formal Languages and Automata Theory	PC	30	70	100	3	0	0	3
4	R23C854	Professional Elective-I 1.Object Oriented Analysis & Design 2.Artificial Intelligence 3.Microprocessors & Microcontrollers 4.Quantum Computing 5.12 Week Mooc swayam NPTEL course recommend by the BoS	PE	30	70	100	3	0	0	3
5	B23CC51	Open Elective -I (OR) Entrepreneurship Development & Venture Creation	OE	30	70	100	3	0	0	3
6	B23CS56	Data Mining Lab	PC	30	70	100	0	0	3	1.5
7	B23CS57	Computer Networks Lab	PC	30	70	100	0	0	3	1.5
8	B23CS58	Full Stack Development-2	SOC	30	70	100	0	1	2	2
9	B23CS59	User Interface Design using Flutter/SWAYAM/ Plus Android Application Development	ES	30	70	100	0	0	2	1
10	B23CSP50	Evaluation of Community Service Project Intern ship	-	-	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 & As - 17. 2 - 1 .	1 <u>-</u>	-		2
							15	1	10	23

Dr. M.H.M. Krishna Pragas
JNTUK Nominer

II- SEMESTER

S.N o.	Subject Code	SUBJECT	Cat. Code	INTERNAL MARKS	EXTERN AL MARKS	TOTAL MARKS	L	Т	P	CR EDI TS
1	B23CS61	Compiler Design	PC	30	70	100	3	0	0	3
2	B23CS62	Cloud Computing	PC	30	70	100	3	0	0	3
3	B23CS63	Cryptography & Network Security	PC	30	70	100	3	0	0	3
4	B23CS64	Professional Elective-II 1.Software Testing Methodologies 2.Cyber Security 3.DevOps 4.Machine Learning 5.12 Week MOOC Swayam/NPTEL Course recommended by the Bos	PE	30	70	100	3	0	0	3
5	B23CS65	Professional Elective-III 1.Software Project Management 2.Mobile Adhoc Networks 3.Natural Languages Processing 4.Big Data Analytics 5.Distributed Operating System 6.12 Week MOOC Swayam/NPTEL Course Recommended by the BoS	PE	30	70	100	3	0	0	3
6	B23CS02A	Open Elective -II	OE	30	70	100	3	0	0	3
7	B23CS66	Cloud Computing Lab	PC	30	70	100	0	0	3	1.5
8	B23CS67	Cryptography & Network Security Lab	PC	30	70	100	0	0	3	1.5
9	B23SH61	Soft skill/ SWAYAM Plus 21st Century Employability Skills	SEC	30	70	100	0	1	2	2
10	B23CC6A	Technical Paper Writing & IPR	AC		-	-	2	0	0	-
	7	Γotal				3 3	20	1	08	23
	mand phy	X 14 14 19	ra.							

III B.TECH SEMISTER-I

S. No	Subject Code	SUBJECT	Cat. Code	INTERNAL MARKS	EXTER NAL MARKS	TOTAL MARKS	L	Т	P	CR EDI TS
1	B23CS51	Data Wares housing and Data Mining	РС	30	70	100	3	0	0	3
2	B23CS52	Computer Networks	PC	30	70	100	3	0	0	3
3	B23CS53	Formal Languages and Automata Theory	РС	30	70	100	3	0	0	3
4	R23C854	Professional Elective -I 1. Open Oriented Analysis & Design 2. Artificial Intelligence 3. Microprocessors & Microcontrollers 4. Quantum Computing 5.12 Week Mooc swayam NPTEL course recommend by the BoS	PE	30	70	100	3	0	0	3
5	B23CC51	Open Elective -I (OR) Entrepreneurship Development & Venture Creation	OE	30	70	100	3	0	0	3
6	B23CS56	Data Mining Lab	PC	30	70	100	0	0	3	1.5
7	B23CS57	Computer Networks Lab	PC	30	70	100	0	0	3	1.5
8	B23CS58	Full Stack Development-2	SOC	30	70	100	0	1	2	2
9	B23CS59	User Interface Design using Flutter/SWAYAM/ Plus Android Application Development	ES	30	70	100	0	0	2	1
10	B23CSP50	Evaluation of Community Service Project Intern ship		_	_	-	-	-		2
							15	1	10	23

SUBCODE: B23CS51		DA	TA	WAREHOU	USING & DA	TA MINI	NG
TOLMLOTEK	3	-	-	30	70	100	3
III B.TECH I SEMESTER	L	Т	Р	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS

Pre-requisites: Data Structures, Algorithms, Probability & Statistics, Data Base Management Systems

COURSE OBJECTIVES

The main objective of the course is to

- Introduce basic concepts and techniques of data warehousing and data mining
- Examine the types of the data to be mined and apply pre-processing methods on raw data
- Discover interesting patterns, analyze supervised and unsupervised models and estimate the accuracy of the algorithms.

COURSE OUTCOMES: At the end of the course students will be able to

- CO1: Summarize the Architecture of Data Warehouse and OLAP schemas
- **CO2:** Apply different preprocessing methods, similarity and dissimilarity measures for given raw data.
- CO3: Construct a decision tree by using different algorithms and resolve the problem of model over fitting
- CO4: Compare Apriori and FP growth algorithms for frequent item set generation.
- CO5: Apply different clustering algorithms on the given data set for accurate clustering.

SYLLABUS

UNIT-I

Data Warehousing and Online Analytical Processing: Basic concepts, Data Warehouse Modeling: Data Cube and OLAP, Data Warehouse Design and Usage, Data Warehouse Implementation, Cloud Data Warehouse, Data Mining and Patten Mining, Technologies, Applications, Major issues, Data Objects & Attribute Types, Basic Statistical Descriptions of Data, Data Visualization, Measuring Data Similarity and Dissimilarity. (Text Book-1)

UNIT II

Data Preprocessing: An Overview, Data Cleaning, Data Integration, Data Reduction, Data Transformation and Data Discretization. (Text Book-1)

UNIT-III

Classification: Basic Concepts, General Approach to solving a classification problem, Decision Tree Induction: Attribute Selection Measures, Tree Pruning, Scalability and Decision Tree Induction, Visual Mining for Decision Tree Induction, Bayesian Classification Methods: Bayes Theorem, Naïve Bayes Classification, Rule-Based Classification, Model Evaluation and Selection. (Text Book- 2)

UNIT-IV

Association Analysis: Problem Definition, Frequent Itemset Generation, Rule Generation: Confident Based Pruning, Rule Generation in Apriori Algorithm, Compact Representation of frequent item sets, FP-Growth Algorithm. (Text Book-2)

UNIT-V

Cluster Analysis: Overview, Basics and Importance of Cluster Analysis, Clustering techniques, Different Types of Clusters; K-means: The Basic K-means Algorithm, K-means Additional Issues, Bi-secting K Means, Agglomerative Hierarchical Clustering: Basic Agglomerative Hierarchical Clustering Algorithm DBSCAN: Traditional Density Center-Based Approach, DBSCAN Algorithm, Strengths and Weaknesses. (Text Book- 2)

TEXT BOOKS:

- 1. Data Mining concepts and Techniques, 3rd edition, Jiawei Han, Michel Kamber, Elsevier, 2011.
- 2. Introduction to Data Mining: Pang-Ning Tan & Michael Steinbach, Vipin Kumar, Pearson, 2012.

REFERENCE BOOKS:

- 1. Data Mining: VikramPudi and P. Radha Krishna, Oxford Publisher.
- 2. Data Mining Techniques, Arun K Pujari, 3rd edition, Universities Press, 2013.
- 3. (NPTEL course by Prof.PabitraMitra) http://onlinecourses.nptel.ac.in/noc17 mg24/preview
- 4. http://www.saedsayad.com/data_mining_map.htm

III B.TECH I SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
ISEMESTER	3	-	-	30	70	100	3
SUBCODE: B23CS52		•		СОМІ	PUTER NETWO	ORKS	

COURSE OBJECTIVES

- To provide insight about networks, topologies, and the key concepts.
- To gain comprehensive knowledge about the layered communication architectures (OSI and TCP/IP) and its functionalities.
- To understand the principles, key protocols, design issues, and significance of each layers in ISO and TCP/IP.
- To know the basic concepts of network services and various network applications.

COURSE OUTCOMES: At the end of the course students will be able to

CO1: Apply different network models & communication techniques, methods and protocol standards

CO2: Examine different transmission media for transferring error free data

CO3: Compare and Classify medium access control protocols Ethernet protocols

CO4: Examine the Network Layer Design Issues and internet protocols (IPV4 & IPV6).

CO5: Reflect application layer services and client server protocols working with the client server paradigms

SYLLABUS

UNIT-I

Introduction: Network Types, LAN, MAN, WAN, Network Topologies Reference models- The OSI Reference Model- the TCP/IP Reference Model - A Comparison of the OSI and TCP/IP Reference Models, OSI Vs TCP/IP.

Physical Layer –Introduction to Guided Media- Twisted-pair cable, Coaxial cable and Fiber optic cable and introduction about unguided media.

UNIT II

Data link layer: Design issues, **Framing**: fixed size framing, variable size framing, flow control, error control, error detection and correction codes, CRC, Checksum: idea, one's complement internet checksum, services provided to Network Layer, **Elementary Data Link Layer protocols**: simplex protocol, Simplex stop and wait, Simplex protocol for Noisy Channel.

Sliding window protocol: One bit, Go back N, Selective repeat-Stop and wait protocol, Data link layer in HDLC, Point to point protocol (PPP)

UNIT-III

Media Access Control: Random Access: ALOHA, Carrier sense multiple access (CSMA), CSMA with Collision Detection, CSMA with Collision Avoidance, Controlled Access: Reservation, Polling, Token Passing, Channelization: frequency division multiple Access(FDMA), time division multiple access(TDMA), code division multiple access(CDMA).

Wired LANs: Ethernet, Ethernet Protocol, Standard Ethernet, Fast Ethernet(100 Mbps), Gigabit Ethernet, 10 Gigabit Ethernet.

UNIT-IV

The Network Layer Design Issues – Store and Forward Packet Switching-Services Provided to the Transport layer- Implementation of Connectionless Service-Implementation of Connection Oriented Service- Comparison of Virtual Circuit and Datagram Networks,

Routing Algorithms-The Optimality principle-Shortest path, Flooding, Distance vector, Link state, Hierarchical, Congestion Control algorithms-General principles of congestion control, Congestion prevention polices, Approaches to Congestion Control-Traffic Aware Routing- Admission Control-Traffic Throttling-Load Shedding. Traffic Control Algorithm-Leaky bucket & Token bucket.

Internet Working: How networks differ- How networks can be connected- Tunnelling, internetwork routing-, Fragmentation, network layer in the internet — IP protocols-IP Version 4 protocol-IPV4 Header Format, IP addresses, Class full Addressing, CIDR, Subnets-IP Version 6-The main IPV6 header, Transition from IPV4 to IPV6, Comparison of IPV4 & IPV6.

UNIT-V

The Transport Layer: Transport layer protocols: Introduction-services- port number-User data gram protocol-User datagram-UDP services-UDP applications-Transmission control protocol: TCP services- TCP features- Segment- A TCP connection- windows in TCP- flow control-Error control, Congestion control in TCP.

Application Layer — World Wide Web: HTTP, Electronic mail-Architecture- web based mail-email security- TELENET-local versus remote Logging-Domain Name System.

TEXT BOOKS:

- 1. Computer Networksm, Andrew S Tanenbaum, Fifth Edition. Pearson Education/PHI
- 2. Data Communications and Networks, Behrouz A. Forouzan, Fifth Edition TMH.

REFERENCES BOOKS:

- 1. Data Communications and Networks- Achut S Godbole, AtulKahate
- 2. Computer Networks, Mayank Dave, CENGAGE

III B.TECH I SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
ISEMESTER	3	-	-	30	70	100	3
SUBCODE: B23CS53	F	ORN	ΛAL	LANGUAGE	S AND AUTO	MATA THI	EORY

COURSE OBJECTIVES

- To learn fundamentals of Regular and Context Free Grammars and Languages
- To understand the relation between Regular Language and Finite Automata and machines
- To learn how to design Automata's and machines as Acceptors, Verifiers and Translators
- To understand the relation between Contexts free Languages, PDA and TM
- To learn how to design PDA as acceptor and TM as Calculators

COURSE OUTCOMES: At the end of the course students will be able to

CO1: Design the DFA and NFA after understanding the core concepts in automata theory and formal languages

CO2: Analyze the equivalence of regular expression and finite automata and different types of grammars

CO3: Demonstrate the concept of context free grammar and normal forms

CO4: Design pushdown automata and the equivalent context free grammars

CO5: Analyze the computational power and limitations of Turing Machines and explore decidability and complexity issues

SYLLABUS

UNIT-I

Finite Automata: Need of Automata theory, Central Concepts of Automata Theory, Automation, Finite Automation, Transition Systems, Acceptance of a String, DFA, Design of DFAs, NFA, Design of NFA, Equivalence of DFA and NFA, Conversion of NFA into DFA, Finite Automata with C-Transitions, Minimization of Finite Automata, Finite Automata with output-Mealy and Moore Machines, Applications and Limitation of Finite Automata.

UNIT-II

Regular Expressions, Regular Sets, Identity Rules, Equivalence of two RE, Manipulations of REs, Finite Automata and Regular Expressions, Inter Conversion, Equivalence between FA and RE, Pumping Lemma of Regular Sets, Closure Properties of Regular Sets, Grammars, Classification of Grammars, Chomsky Hierarchy Theorem, Right and Left Linear Regular Grammars, Equivalence between RG and FA, Inter Conversion.

UNIT-III

Formal Languages, Context Free Grammar, Leftmost and Rightmost Derivations, Parse Trees, Ambiguous Grammars, Simplification of Context Free Grammars-Elimination of Useless Symbols, E-Productions and Unit Productions, Normal Forms-Chomsky Normal Form and Greibach Normal Form, Pumping Lemma, Closure Properties, Applications of Context Free Grammars.

UNIT-IV

Pushdown Automata, Definition, Model, Graphical Notation, Instantaneous Description, Language Acceptance of Pushdown Automata, Design of Pushdown Automata, Deterministic and Non — Deterministic Pushdown Automata, Equivalence of Pushdown Automata and Context Free Grammars, Conversion, Two Stack Pushdown Automata, Application of Pushdown Automata.

UNIT-V

Turning Machine: Definition, Model, Representation of TMs-Instantaneous Descriptions, Transition Tables and Transition Diagrams, Language of a TM, Design of TMs, Types of TMs, Church's Thesis, Universal and Restricted TM, Decidable and Un-decidable Problems, Halting Problem of TMs, Post's Correspondence Problem, Modified PCP, Classes of P and NP, NP-Hard and NP-Complete Problems.

TEXT BOOKS:

- 1. Introduction to Automata Theory, Languages and Computation, J. E. Hopcroft, R. Motwani and J. D. Ullman, 3rd Edition, Pearson, 2008
- 2. Theory of Computer Science-Automata, Languages and Computation, K. L. P. Mishra and N. Chandrasekharan, 3rd Edition, PHI, 2007

REFERENCE BOOKS:

- 1. Elements of Theory of Computation, Lewis H.P. & Papadimition C.H., Pearson /PHI
- 2. Theory of Computation, V. Kulkarni, Oxford University Press, 2013
- 3. Theory of Automata, Languages and Computation, Rajendra kumar, McGraw Hill, 2014

E-RESOURCES:

1) https://nptel.ac.in/courses/106/104/106104028/

III B.TECH I SEMESTER	L	Т	Р	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
I SLIVILSTER	3	_	-	30	70	100	3
SUBCODE: B23CS54A	ОВ	JEC	CT (DRIENTED	ANALYSIS	AND DES	SIGN

COURSE OBJECTIVES

The main objective is the students to

- Become familiar with all phases of OOAD.
- Master the main features of the UML.
- Master the main concepts of Object Technologies and how to apply them at work and develop the ability to analyze and solve challenging problem in various domains.
- Learn the Object design Principles and understand how to apply them towards Implementation.

COURSE OUTCOMES: At the end of the course students will be able to

- **CO1:** Apply the phases of Object-Oriented Analysis and Design (OOAD) and the inherent complexity of software systems
- **CO2:** Apply the Unified Modeling Language (UML) to model software systems, using appropriate structural and behavioral diagrams.
- CO3: Analyze the requirements of real-world systems and develop UML models (class, object, use case, and activity diagrams) for them
- **CO4:** Evaluate object-oriented design principles such as abstraction, encapsulation, and modularity to improve software architecture.
- CO5: Design and construct complex software models using advanced UML diagrams including state charts, components, and deployment diagrams

SYLLABUS

UNIT-I:

Introduction: The Structure of Complex systems, The Inherent Complexity of Software, Attributes of Complex System, Organized and Disorganized Complexity, Bringing Order to Chaos, Designing Complex Systems. **Case Study:** System Architecture: Satellite-Based Navigation

UNIT-II

Introduction to UML: Importance of modeling, principles of modeling, object oriented modeling, conceptual model of the UML, Architecture, and Software Development Life Cycle. Basic Structural Modeling: Classes, Relationships, common Mechanisms, and diagrams. Case Study: Control System: Traffic Management.

UNIT-III

Class & Object Diagrams: Terms, concepts, modeling techniques for Class & Object Diagrams. Advanced Structural Modeling: Advanced classes, advanced relationships, Interfaces, Types and Roles, Packages. Case Study: AI: Cryptanalysis.

UNIT-IV

Basic Behavioral Modeling-I: Interactions, Interaction diagrams Use cases, Use case Diagrams, Activity Diagrams. **Case Study:** Web Application: Vacation Tracking System

UNIT-V

Advanced Behavioral Modeling: Events and signals, state machines, processes and Threads, time and space, state chart diagrams. **Architectural Modeling:** Component, Deployment, Component diagrams and Deployment diagrams. **Case Study:** Weather Forecasting

TEXT BOOKS:

- 1. Grady BOOCH, Robert A. Maksimchuk, Michael W. ENGLE, Bobbi J. Young, Jim Conallen, Kellia Houston, "Object- Oriented Analysis and Design with Applications", 3rd edition, 2013, PEARSON.
- 2. Grady Booch, James Rumbaugh, Ivar Jacobson: The Unified Modeling Language User Guide, Pearson Education.

REFERENCE BOOKS:

- 1. Meilir Page-Jones: Fundamentals of Object Oriented Design in UML, Pearson Education.
- 2. Pascal Roques: Modeling Software Systems Using UML2, WILEY- Dreamtech India Pvt.
- 3. Atul Kahate: Object Oriented Analysis & Design, The McGraw-Hill Companies.
- 4. Appling UML and Patterns: An introduction to Object Oriented Analysis and Design and Unified Process, Craig Larman, Pearson Education.

SUBCODE:	3	<u> </u>	<u> </u>	A DELETO	IAL INTELL	100	3
III B.TECH I SEMESTER	L	Т	Р	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS

Pre-requisite:

- 1. Knowledge in Computer Programming.
- 2. A course on "Mathematical Foundations of Computer Science".
- 3. Background in linear algebra, data structures and algorithms, and probability.

COURSE OBJECTIVES

- 1. The student should be made to study the concepts of Artificial Intelligence.
- 2. The student should be made to learn the methods of solving problems using Artificial Intelligence.
- 3. The student should be made to introduce the concepts of Expert Systems.
- 4. To understand the applications of AI, namely game playing, theorem proving, and machine learning.
- 5. To learn different knowledge representation techniques

COURSE OUTCOMES: At the end of the course students will be able to

CO1: Apply the characteristics of AI on the real-world problems

CO2: Experiment with the applications of search strategies and problem reductions

CO3: Analyze knowledge representation and symbolic reasoning using different rules

CO4: Apply the mathematical logic concepts on Decision trees, chaining methods

CO5: Make use of the Knowledge about the Expert Systems in solving the complex problems

SYLLABUS

UNIT-I

Introduction: All problems, foundation of Al and history of Al intelligent agents: Agents and Environments, the concept of rationality, the nature of environments, structure of agents, problem solving agents, problem formulation.

UNIT-II

Searching- Searching for solutions, uniformed search strategies — Breadth first search, depth first Search. Search with partial information (Heuristic search) Hill climbing, A*, AO* Algorithms, Problem reduction, Game Playing-Adversial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions.

UNIT-III

Representation of Knowledge: Knowledge representation issues, predicate logic logic programming, semantic nets- frames and inheritance, constraint propagation, representing knowledge using rules, rules based deduction systems. Reasoning under uncertainty, review of probability, Bayes' probabilistic interferences and dempstershafer theory.

UNIT-IV

Logic concepts: First order logic. Inference in first order logic, propositional vs. first order inference, unification & lifts forward chaining, Backward chaining, Resolution, Learning from observation Inductive learning, Decision trees, Explanation based learning, Statistical Learning methods, Reinforcement Learning.

UNIT-V

Expert Systems: Architecture of expert systems, Roles of expert systems – Knowledge Acquisition Meta knowledge Heuristics. Typical expert systems – MYCIN, DART, XCON: Expert systems shells.

TEXTBOOKS:

- 1. S. Russel and P. Norvig, "Artificial Intelligence A Modern Approach", SecondEdition, Pearson Education.
- 2. Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", Mc Graw Hill

REFERENCE BOOKS:

- 1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: a logical approach", Oxford University Press.
- 2. G. Luger, "Artificial Intelligence: Structures and Strategies for complex problemsolving", Fourth Edition, Pearson Education.
- 3. J. Nilsson, "Artificial Intelligence: A new Synthesis", Elsevier Publishers.
- 4. Artificial Intelligence, Saroj Kaushik, CENGAGE Learning.

ONLINE LEARNING RESOURCES:

- 1. https://ai.google/
- 2. https://swayam.gov.in/nd1 noc19 me71/preview

III B.TECH I SEMESTER	L	Т	Р	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
	3	-	-	30	70	100	3
SUBCODE: B23CS54C	MI	CRO)PR	OCESSORS	& MICROCO	NTROLL	ERS

COURSE OBJECTIVES

- To introduce fundamental architectural concepts of microprocessors and microcontrollers.
- To impart knowledge on addressing modes and instruction set of 8086 and 8051
- To introduce assembly language programming concepts
- To explain memory and I/O interfacing with 8086 and 8051
- To introduce 16 bit and 32 bit microcontrollers.

COURSE OUTCOMES: At the end of the course students will be able to

- **CO1:** Describe the architecture, functional units, and operation modes of the 8086 microprocessor
- CO2: Develop and analyze assembly language programs for the 8086 microprocessor using appropriate instructions and addressing modes.
- CO3: Analyze knowledge representation and symbolic reasoning using different rules
- **CO4:** Explain the architecture, instruction set, and programming model of the 8051 microcontroller
- **CO5:** Design and implement applications using the 8051 microcontroller including timers, serial ports, interrupts, and interfacing with external peripherals.

SYLLABUS

UNIT-I

8086 Architecture: Main features, pin diagram/description, 8086 microprocessor family, internal architecture, bus interfacing unit, execution unit, interrupts and interrupt response, 8086 system timing, minimum mode and maximum mode configuration.

UNIT-II

8086 Programming: Program development steps, instructions, addressing modes, assembler directives, writing simple programs with an assembler, assembly language program development tools.

UNIT-III

8086 Interfacing: Semiconductor memories interfacing (RAM, ROM), Intel 8255 programmable peripheral interface, Interfacing switches and LEDS, Interfacing seven segment displays, software and hardware interrupt applications, Intel 8251 USART architecture and interfacing, Intel 8237a DMA controller, stepper motor, A/D and D/A converters, Need for 8259 programmable interrupt controllers.

UNIT-IV

Microcontroller, Architecture of 8051, Special Function Registers(SFRs), I/O Pins Ports and Circuits, Instruction set, Addressing modes, Assembly language programming.

UNIT-V

Interfacing Microcontroller, Programming 8051 Timers, Serial Port Programming, Interrupts Programming, LCD & Keyboard Interfacing, ADC, DAC & Sensor Interfacing, External Memory Interface, Stepper Motor and Waveform generation, Comparison of Microprocessor, Microcontroller, PIC and ARM processors

TEXTBOOKS:

- 1. Microprocessors and Interfacing Programming and Hardware by Douglas V Hall, SSSP Rao, Tata McGraw Hill Education Private Limited, 3rd Edition,1994.
- 2. K M Bhurchandi, A K Ray, Advanced Microprocessors and Peripherals, 3rd edition, McGraw Hill Education, 2017.
- 3. Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design, 2nd edition, Pearson, 2012.

REFERENCE BOOKS:

- 1. Ramesh S Gaonkar, Microprocessor Architecture Programming and Applications with the 8085, 6th edition, Penram International Publishing, 2013.
- 2. Kenneth J. Ayala, The 8051 Microcontroller, 3rd edition, Cengage Learning, 2004.

	III B.TECH I SEMESTER	L	Т	Р	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS				
L	1 SEMESTER	3	-	-	30	70	100	3				
	SUBCODE:											
L	B23CS54D		QUANTUM COMPUTING									

COURSE OBJECTIVES:

To introduce the fundamentals of quantum computing, the problem-solving approach using finite dimensional mathematics

COURSE OUTCOMES: At the end of the course students will be able to

CO1: Differentiate between classical computing and quantum computing paradigms

CO2: Analyze the mathematical framework of Hilbert space and its application to quantum systems

CO3: Represent and interpret quantum states using the Bloch sphere

CO4: Implement and evaluate Shor's algorithm for integer factorization

CO5: Apply quantum error correction principles and explore fault-tolerant computation.

SYLLABUS

UNIT-I

History of Quantum Computing: Importance of Mathematics, Physics and Biology. Introduction to Quantum Computing: Bits Vs Qubits, Classical Vs Quantum logical operations

UNIT-II

Background Mathematics: Basics of Linear Algebra, Hilbert space, Probabilities and measurements. Background Physics: Paul's exclusion Principle, Superposition, Entanglement and super-symmetry, density operators and correlation, basics of quantum mechanics, Measurements in bases other than computational basis. Background Biology: Basic concepts of Genomics and Proteomics (Central Dogma)

UNIT-III

Qubit: Physical implementations of Qubit. Qubit as a quantum unit of information. The Bloch sphere Quantum Circuits: single qubit gates, multiple qubit gates, designing the quantum circuits. Bell states.

UNIT-IV

Quantum Algorithms: Classical computation on quantum computers. Relationship between quantum and classical complexity classes. Deutsch's algorithm, Deutsch's-Jozsa algorithm, Shor's factorization algorithm, Grover's search algorithm.

UNIT-V

Noise and error correction: Graph states and codes, Quantum error correction, fault-tolerant computation. Quantum Information and Cryptography: Comparison between classical and quantum information theory. Quantum Cryptography, Quantum teleportation

TEXT BOOKS:

- 1. Quantum Computation and Quantum Information, Nielsen M. A., Cambridge
- 2. Programming Quantum Computers, Essential Algorithms and Code Samples, Eric R Johnson, Nic Harrigan, Mercedes Ginemo, Segovia, Oreilly

REFERENCE BOOKS:

- 1. Quantum Computing for Computer Scientists, Noson S. Yanofsk, Mirco A. Mannucci
- 2. Principles of Quantum Computation and Information, Benenti G., Casati G. and Strini G., Vol.I: Basic Concepts, Vol II
- 3. Basic Tools and Special Topics, World Scientific. Pittenger A. O., An Introduction to Quantum Computing Algorithms

SUBCODE: B23CC51	3		_	30 ENTDE	70 PRENEURS	100	3
III B.TECH I SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS

COURSE OBJECTIVES:

- 1) To develop and strengthen entrepreneurial quality and motivation in students.
- 2) To impart basic entrepreneurial skills and understandings to run a business efficiently and effectively

COURSE OUTCOMES: At the end of the course, student will be able to

- Study the concept of entrepreneurship, knowledge and skills of entreprenuer.
- Get the awareness on business environment
- Get the awareness on industrial policies
- Gain the competency on preparing business plan
- Study the impact of launching small business and understand resource planning for start up

SYLLABUS

UNIT-I

ENTREPRENEURAL COMPETENCE

Entrepreneurship concept – Entrepreneurship as a Career – Entrepreneurial Personality - Characteristics of Successful, Entrepreneur – Knowledge and Skills of Entrepreneur.

UNIT-II

ENTREPRENEURAL ENVIRONMENT

Business Environment - Role of Family and Society - Entrepreneurship Development Training and Other Support Organisational Services.

UNIT-III

INDUSTRIAL POLICIES

Central and State Government Industrial Policies and Regulations - International Business.

UNIT-IV

BUSINESS PLAN PREPARATION

Sources of Product for Business - Prefeasibility Study - Criteria for Selection of Product - Ownership - Capital - Budgeting Project Profile Preparation - Matching Entrepreneur with the Project - Feasibility Report Preparation and Evaluation Criteria.

UNIT- V

LAUNCHING OF SMALL BUSINESS

Finance and Human Resource Mobilization Operations Planning - Market and Channel Selection - Growth Strategies - Product Launching - Incubation, Venture capital, IT start ups.

Monitoring and Evaluation of Business - Preventing Sickness and Rehabilitation of Business Units- Effective Management of small Business.

TEXT BOOKS

- 1. Hisrich, Entrepreneurship, Tata McGraw Hill, New Delhi, 2001.
- 2. S.S.Khanka, Entrepreneurial Development, S.Chand and Company Limited, NewDelhi, 2001.

REFERENCES

- 1. Mathew Manimala, Entrepreneurship Theory at the Crossroads, Paradigms & Praxis, Biztrantra ,2nd Edition ,2005
- 2. Prasanna Chandra, Projects Planning, Analysis, Selection, Implementation and Reviews, Tata McGraw-Hill, 1996.
- 3. P.Saravanavel, Entrepreneurial Development, Ess Pee kay Publishing House, Chennai -1997.
- 4. Arya Kumar. Entrepreneurship. Pearson. 2012 5. Donald F Kuratko, T.V Rao. Entrepreneurship: A South Asian perspective. Cengage Learning. 2012

III B.TECH I SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
ISEMESTER	-	-	3	30	70	100	1.5
SUBCODE: B23CS56			•	DAT	'A MINING I	LAB	

Pre-requisites: Data Base Management Systems, Python Programming

COURSE OBJECTIVES

The main objective of the course is to

- 1. Inculcate Conceptual, Logical, and Physical design of Data Warehouses OLAP applications and OLAP deployment
- 2. Design a data warehouse or data mart to present information needed by management in a form that is usable
- 3. Emphasize hands-on experience working with all real data sets.
- 4. Test real data sets using popular data mining tools such as WEKA, Python Libraries
- 5. Develop ability to design various algorithms based on data mining tools.

Software Requirements: WEKA Tool/Python/R-Tool/Rapid Tool/Oracle Data mining

SYLLABUS

List of Experiments:

- 1. Creation of a Data Warehouse.
 - Build Data Warehouse/Data Mart (using open source tools like Pentaho Data Integration Tool, Pentaho Business Analytics; or other data warehouse tools like Microsoft-SSIS, Informatica, Business Objects, etc.,)
 - Design multi-dimensional data models namely Star, Snowflake and Fact Constellation schemas for any one enterprise (ex. Banking, Insurance, Finance, Healthcare, manufacturing, Automobiles, sales etc).
 - Write ETL scripts and implement using data warehouse tools.
 - · Perform Various OLAP operations such slice, dice, roll up, drill up and pivot

2. Explore machine learning tool "WEKA"

- Explore WEKA Data Mining/Machine Learning Toolkit.
- Downloading and/or installation of WEKA data mining toolkit.
- Understand the features of WEKA toolkit such as Explorer, Knowledge Flow interface, Experimenter, command-line interface.
- Navigate the options available in the WEKA (ex. Select attributes panel, Preprocess panel, Classify panel, Cluster panel, Associate panel and Visualize panel)
- Study the arff file format Explore the available data sets in WEKA. Load a data set (ex. Weather dataset, Iris dataset, etc.)
- Load each dataset and observe the following:
 - 1. List the attribute names and they types
 - 2. Number of records in each dataset
 - 3. Identify the class attribute (if any)
 - 4. Plot Histogram
 - 5. Determine the number of records for each class.

- 6. Visualize the data in various dimensions
- 3. Perform data preprocessing tasks and Demonstrate performing association rule mining on data sets
 - Explore various options available in Weka for preprocessing data and apply Unsupervised filters like Discretization, Resample filter, etc. on each dataset
 - Load weather. nominal, Iris, Glass datasets into Weka and run Apriori Algorithm with different support and confidence values.
 - Study the rules generated. Apply different discretization filters on numerical attributes and run the Apriori association rule algorithm. Study the rules generated.
 - Derive interesting insights and observe the effect of discretization in the rule generation process.
- 4. Demonstrate performing classification on data sets Weka/R
 - Load each dataset and run 1d3, J48 classification algorithm. Study the classifier output. Compute entropy values, Kappa statistic.
 - Extract if-then rules from the decision tree generated by the classifier, Observe the confusion matrix
 - Load each dataset into Weka/R and perform Naïve-bayes classification and k-Nearest Neighbour classification. Interpret the results obtained.
 - Plot RoC Curves
 - Compare classification results of ID3, J48, Naïve-Bayes and k-NN classifiers for each dataset, and deduce which classifier is performing best and poor for each dataset and justify.
- 5. Demonstrate performing clustering of data sets
 - Load each dataset into Weka/R and run simple k-means clustering algorithm with different values of k (number of desired clusters).
 - Study the clusters formed. Observe the sum of squared errors and centroids, and derive insights.
 - Explore other clustering techniques available in Weka/R.
 - Explore visualization features of Weka/R to visualize the clusters. Derive interesting insights and explain.
- 6. Demonstrate knowledge flow application on data sets into Weka/R
 - Develop a knowledge flow layout for finding strong association rules by using Apriori, FP Growth algorithms
 - Set up the knowledge flow to load an ARFF (batch mode) and perform a cross validation using J48 algorithm
 - Demonstrate plotting multiple ROC curves in the same plot window by using j48 and Random forest tree
- 7. Demonstrate ZeroR technique on Iris dataset (by using necessary preprocessing technique(s)) and share your observations
- 8. Write a java program to prepare a simulated data set with unique instances.
- 9. Write a Python program to generate frequent item sets / association rules using Apriori algorithm
- 10. Write a program to calculate chi-square value using Python/R. Report your observation.
- 11. Write a program of Naive Bayesian classification using Python/R programming language.
- 12. Implement a Java/R program to perform Apriori algorithm

- 13. Write a R program to cluster your choice of data using simple k-means algorithm using JDK
- 14. Write a program of cluster analysis using simple k-means algorithm Python/R programming language.
- 15. Write a program to compute/display dissimilarity matrix (for your own dataset containing at least four instances with two attributes) using Python
- 16. Visualize the datasets using matplotlib in python/R.(Histogram, Box plot, Bar chart, Pie chart etc.,)

The second s The second secon

III B.TECH I SEMESTER	0	0	3	MARKS 30	MARKS 70	MARKS 100	1.5
SUBCODE: B23CS57				COMPUT	ER NETWO	DKSLAR	<u> </u>

COURSE OBJECTIVES

Learn basic concepts of computer networking and acquire practical notions of protocols with the emphasis on TCP/IP. A lab provides a practical approach to Ethernet/Internet networking: networks are assembled, and experiments are made to understand the layered architecture and how do some important protocols work

SYLLABUS

List of Experiments:

- 1. Study of Network devices in detail and connect the computers in Local Area Network.
- 2. Write a Program to implement the data link layer farming methods such as
 - i) Character stuffing ii) bit stuffing.
- 3. Write a Program to implement data link layer farming method checksum.
- 4. Write a program for Hamming Code generation for error detection and correction.
- 5. Write a Program to implement on a data set of characters the three CRC polynomials CRC 12, CRC 16 and CRC CCIP.
- 6. Write a Program to implement Sliding window protocol for Goback N.
- 7. Write a Program to implement Sliding window protocol for Selective repeat.
- 8. Write a Program to implement Stop and Wait Protocol.
- 9. Write a program for congestion control using leaky bucket algorithm
- 10. Write a Program to implement Dijkstra's algorithm to compute the Shortest path through a graph.
- 11. Write a Program to implement Distance vector routing algorithm by obtaining routing table at each node (Take an example subnet graph with weights indicating delay between nodes).
- 12. Write a Program to implement Broadcast tree by taking subnet of hosts.
- 13. Wireshark
 - i. Packet Capture Using Wire shark
 - ii. Starting Wire shark
 - iii. Viewing Captured Traffic
 - iv. Analysis and Statistics & Filters.
- 14. How to run Nmap scan
- 15. Operating System Detection using Nmap
- 16. Do the following using NS2 Simulator
 - i. NS2 Simulator-Introduction
 - ii. Simulate to Find the Number of Packets Dropped
 - iii. Simulate to Find the Number of Packets Dropped by TCP/UDP
 - iv. Simulate to Find the Number of Packets Dropped due to Congestion
 - v. Simulate to Compare Data Rate& Throughput.

and the second of the second o

III B.TECH I SEMESTER	L	Т	Р	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
	0	1	2	30	70	100	2
SUBCODE: B23CS58		FU.	LL	STACK DE	VELOPMEN	T – 2 (SO	C)

COURSE OBJECTIVES:

The main objectives of the course are to

- Make use of router, template engine and authentication using sessions to develop application in Express JS.
- Build a single page application using RESTful APIs in Express JS
- Apply router and hooks in designing React JS application
- Make use of Mongo DB queries to perform CRUD operations on document database

Experiments covering the Topics:

- Express JS Routing, HTTP Methods, Middleware, Templating, Form Data
- Express JS Cookies, Sessions, Authentication, Database, RESTful APIs
- React JS Render HTML, JSX, Components function & Class, Props and States, Styles, Respond to Events
- React JS Conditional Rendering, Rendering Lists, React Forms, React Router, Updating the Screen
- ReactJS Hooks, Sharing data between Components, Applications To-do list and Quiz
- MongoDB Installation, Configuration, CRUD operations, Databases, Collections and Records

SYLLABUS

Sample Experiments:

1. Express JS - Routing, HTTP Methods, Middle ware.

- a. Write a program to define a route, Handling Routes, Route Parameters, Query Parameters and URL building.
- b. Write a program to accept data, retrieve data and delete a specified resource using http methods.
- c. Write a program to show the working of middleware.

2. Express JS - Templating, Form Data

- a. Write a program using templating engine.
- b. Write a program to work with form data.

3. Express JS - Cookies, Sessions, Authentication

- a. Write a program for session management using cookies and sessions.
- b. Write a program for user authentication.

4. Express JS - Database, RESTful APIs

a. Write a program to connect MongoDB database using Mangoose and perform CRUD operations.

b. Write a program to develop a single page application using RESTful APIs.

5. ReactJS - Render HTML, JSX, Components - function & Class

- a. Write a program to render HTML to a web page.
- b. Write a program for writing markup with JSX.
- c. Write a program for creating and nesting components (function and class).

6. ReactJS - Props and States, Styles, Respond to Events

- a. Write a program to work with props and states.
- b. Write a program to add styles (CSS & Sass Styling) and display data.
- c. Write a program for responding to events.

7. ReactJS - Conditional Rendering, Rendering Lists, React Forms

- a. Write a program for conditional rendering.
- b. Write a program for rendering lists.
- c. Write a program for working with different form fields using react forms.

8. ReactJS - React Router, Updating the Screen

- a. Write a program for routing to different pages using react router.
- b. Write a program for updating the screen.

9. ReactJS - Hooks, Sharing data between Components

- a. Write a program to understand the importance of using hooks.
- **b.** Write a program for sharing data between components.

10. MongoDB - Installation, Configuration, CRUD operations

- a. Install MongoDB and configure ATLAS
- b. Write MongoDB queries to perform CRUD operations on document using insert(), find(), update(), remove()

11. MongoDB - Databases, Collections and Records

- a. Write MongoDB queries to Create and drop databases and collections.
- b. Write MongoDB queries to work with records using find(), limit(), sort(), createIndex(), aggregate().

12. Augmented Programs: (Any 2 must be completed)

- a. Design a to-do list application using NodeJS and ExpressJS.
- b. Design a Quiz app using ReactJS.
- c. Complete the MongoDB certification from MongoDB University website.

TEXT BOOKS:

- 1. Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node, Vasan Subramanian, 2nd edition, APress, O'Reilly.
- 2. Node.Js in Action, Mike Cantelon, Mark Harter, T.J. Holowaychuk, Nathan Rajlich, Manning Publications. (Chapters 1-11)
- 3. React Quickly, AzatMardan, Manning Publications (Chapters 1-8,12-14)

WEB LINKS:

- 1. ExpressJS https://www.tutorialspoint.com/expressis
- 2. ReactJS https://www.w3schools.com/REACT (and) https://react.dev/learn#
- 3. MongoDB https://learn.mongodb.com/learning-paths/introduction-to-mongodb

III B.TECH I SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS			
	0	0	2	30	70	100	1			
SUBCODE: B23CS59	US.	USER INTERFACE DESIGN USING FLUTTER								

COURSE OBJECTIVES:

- Learns to Implement Flutter Widgets and Layouts
- Understands Responsive UI Design and with Navigation in Flutter
- Knowledge on Widges and customize widgets for specific UI elements, Themes
- Understand to include animation apart from fetching data

SYLLABUS

List of Experiments:

Students need to implement the following experiments

- 1. a) Install Flutter and Dart SDK.
 - b) Write a simple Dart program to understand the language basics.
- 2. a) Explore various Flutter widgets (Text, Image, Container, etc.).
 - b) Implement different layout structures using Row, Column, and Stack widgets.
- 3. a) Design a responsive UI that adapts to different screen sizes.
 - b) Implement media queries and breakpoints for responsiveness.
- 4. a) Set up navigation between different screens using Navigator.
 - b) Implement navigation with named routes.
- 5. a) Learn about stateful and stateless widgets.
 - b) Implement state management using set State and Provider.
- 6. a) Create custom widgets for specific UI elements.
 - b) Apply styling using themes and custom styles.
- 7. a) Design a form with various input fields.
 - b) Implement form validation and error handling.
- 8. a) Add animations to UI elements using Flutter's animation framework.
 - b) Experiment with different types of animations (fade, slide, etc.).
- 9. a) Fetch data from a REST API.
 - b) Display the fetched data in a meaningful way in the UI.
- 10. a) Write unit tests for UI components.
 - b) Use Flutter's debugging tools to identify and fix issues.

TEXT BOOKS:

- 1. Marco L. Napoli, Beginning Flutter: A Hands-on Guide to App Development.
- 2. Rap Payne, Beginning App Development with Flutter: Create Cross-Platform Mobile Apps 1st Edition, Apres
- 3. Richard Rose, Flutter & Dart Cookbook, Developing Full stack Applications for the Cloud, Oreilly.

III B.TECH SEMISTER-II

S.N o.	Subject Code	SUBJECT	Cat. Code	INTERNA L MARKS	EXTERNA L MARKS	TOTAL MARKS	L	Т	P	CR EDI TS
1	B23CS61	Compiler Design	PC	30	70	100	3	0	0	3
2	B23CS62	Cloud Computing	PC	30	70	100	3	0	0	3
3	B23CS63	Cryptography & Network Security	PC	30	70	100	3	0	0	3
4	B23CS64	Professional Elective-II 1.Software Testing Methodologies 2.Cyber Security 3.DevOps 4.Machine Learning 5.12 Week MOOC Swayam/NPTEL Course recommended by the Bos	PE	30	70	100	3	0	0	3
5	B23CS65	Professional Elective-III 1.Software Project Management 2.Mobile Adhoc Networks 3.Natural Languages Processing 4.Big Data Analytics 5.Distributed Operating System 6.12 Week MOOC Swayam/NPTEL Course Recommended by the BoS	PE	30	70	100	3	0	0	3
6	B23CS02A	Open Elective -II	OE	30	70	100	3	0	0	3
7	B23CS66	Cloud Computing Lab	PC	30	70	100	0	0	3	1.5
8	B23CS67	Cryptography & Network Security Lab	PC	30	70	100	0	0	3	1.5
9	B23SH61	Soft skill/ SWAYAM Plus 21st Century Employability Skills	SEC	30	70	100	0	1	2	2
10	B23CC6A	Technical Paper Writing & IPR	AC	-	-	-	2	0	0	-
		Γotal					20	1	08	23
								=		

SUBCODE: B23CS61	COMPILER DESIGN							
II SEMESTER	3	0		MARKS 30	MARKS 70	MARKS 100	3	
III B.TECH	L	Т	Р	INTERNAL	EXTERNAL	TOTAL	CREDITS	

COURSE OBJECTIVES

Understand the basic concept of compiler design, and its different phases which will be helpful to construct new tools like LEX, YACC, etc.

COURSE OUTCOMES: At the end of the course students will be able to

- CO1: Illustrate different phases of compilation process.
- **CO2:** Apply Top down and Bottom-Up parsing techniques on CFG to construct parse trees
- **CO3:** Examine different Syntax Directed Translations and different intermediate code generation methods
- **CO4:** Choose different code optimization Techniques to enhance the performance of code
- **CO5:** Utilize Various storage organization methods and target code generation strategies

SYLLABUS

UNIT-I

Lexical Analysis: Language Processors, Structure of a Compiler, Lexical Analysis, The Role of the Lexical Analyzer, Bootstrapping, Input Buffering, Specification of Tokens, Recognition of Tokens, Lexical Analyzer Generator-LEX, Finite Automata, Regular Expressions and Finite Automata, Design of a Lexical Analyzer Generator.

Syntax Analysis: The Role of the Parser, Context-Free Grammars, Derivations, Parse Trees, Ambiguity, Left Recursion, Left Factoring,

UNIT-II

Top Down Parsing: Pre Processing Steps of Top Down Parsing, Backtracking, Recursive Descent Parsing, LL (1) Grammars, Non-recursive Predictive Parsing, Error Recovery in Predictive Parsing. **Bottom Up Parsing:** Introduction, Difference between LR and LL Parsers, Types of LR Parsers, Shift Reduce Parsing, SLR Parsers, Construction of SLR Parsing Tables, More Powerful LR Parses, Construction of CLR (1) and LALR Parsing Tables, Dangling Else Ambiguity, Error Recovery in LR Parsing, Handling Ambiguity Grammar with LR Parsers.

UNIT-III

Syntax Directed Translation: Syntax-Directed Definitions, Evaluation Orders for SDD's, Applications of Syntax Directed Translation, Syntax-Directed Translation Schemes, Implementing L-Attributed SDD's. **Intermediate Code Generation:** Variants of Syntax Trees, Three Address Code, Types and Declarations, Translation of Expressions, Type Checking, Control Flow, Back patching, Intermediate Code for Procedures.

UNIT-IV

Code Optimization: The Principle Sources of Optimization, Basic Blocks, Optimization of Basic Blocks, Structure Preserving Transformations, Flow Graphs, Loop Optimization, Data-Flow Analysis, Peephole Optimization

UNIT-V

Run Time Environments: Storage Organization, Run Time Storage Allocation, Activation Records, Procedure Calls, Displays

Code Generation: Issues in the Design of a Code Generator, Object Code Forms, Code Generation Algorithm, Register Allocation and Assignment.

TEXT BOOKS:

1. Compilers: Principles, Techniques and Tools, Second Edition, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman, Pearson, 2007.

REFERENCE BOOKS:

- 1. Compiler Construction, Principles and Practice, Kenneth C Louden, Cengage Learning, 2006
- 2. Modern compiler implementation in C, Andrew W Appel, Revised edition, Cambridge University Press.
- 3. Optimizing Compilers for Modern Architectures, Randy Allen, Ken Kennedy, Kauffmann, 2001.
- 4. Levine, J.R., T. Mason and D. Brown, Lex and Yacc, edition, O'Reilly & Associates, 1990

SUBCODE: B23CS62	CLOUD COMPUTING								
II SEMESTER	3	0	0	30	70	100	3		
III B.TECH II SEMESTER	L	Т	Р	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS		

COURSE OBJECTIVES:

- To explain the evolving utility computing model called cloud computing.
- To introduce the various levels of services offered by cloud.
- To discuss the fundamentals of cloud enabling technologies such as distributed computing, service-oriented architecture and virtualization.
- To emphasize the security and other challenges in cloud computing.
- To introduce the advanced concepts such as containers, serverless computing and cloudcentric Internet of Things.

COURSE OUTCOMES: At the end of the course students will be able to

CO1: Understand the architecture and concept of different cloud models: IaaS, PaaS, SaaS.

CO2: Explain parallel and distributed computing

CO3: Examine taxonomy of virtualization techniques, virtualization and cloud Computing

CO4: Design and deploy cloud computing security and risk measures

CO5: Importance of Advanced concepts in cloud computing

SYLLABUS

UNIT-I

Introduction to Cloud Computing Fundamentals

Cloud computing at a glance, defining a cloud, cloud computing reference model, types of services (laaS, PaaS, SaaS), cloud deployment models (public, private, hybrid), utility computing, cloud computing characteristics and benefits, cloud service providers (Amazon Web Services, Microsoft Azure, Google AppEngine).

UNIT-II

Cloud Enabling Technologies

Ubiquitous Internet, parallel and distributed computing, elements of parallel computing, hardware architectures for parallel computing (SISD, SIMD, MISD, MIMD), elements of distributed computing, Inter-process communication, technologies for distributed computing, remote procedure calls (RPC), service-oriented architecture (SOA), Web services, virtualization.

UNIT-III

Virtualization and Containers

Characteristics of virtualized environments, taxonomy of virtualization techniques, virtualization and cloud Computing, pros and cons of virtualization, technology examples (XEN, VMware), building blocks of containers, container platforms (LXC, Docker), container orchestration, Docker Swarm and Kubernetes, public cloud VM (e.g. Amazon EC2) and container (e.g. Amazon Elastic Container Service) offerings.

UNIT-IV

Cloud computing challenges

Economics of the cloud, cloud interoperability and standards, scalability and fault tolerance, energy efficiency in clouds, federated clouds, cloud computing security, fundamentals of computer security, cloud security architecture, cloud shared responsibility model, security in cloud deployment models.

UNIT-V

Advanced concepts in cloud computing Server less computing, Function-as-a-Service, server less computing architecture, public cloud (e.g. AWS Lambda) and open-source (e.g. Open FaaS) server less platforms, Internet of Things (IoT), applications, cloud-centric IoT and layers, edge and fog computing, DevOps, infrastructure-as-code, quantum cloud computing.

TEXT BOOKS:

- 1. Mastering Cloud Computing, 2nd edition, Rajkumar Buyya, Christian Vecchiola, Thamarai Selvi, Shivananda Poojara, Satish N. Srirama, Mc Graw Hill, 2024.
- 2. Distributed and Cloud Computing, Kai Hwang, Geoffery C. Fox, Jack J. Dongarra, Elsevier, 2012.

REFERENCE BOOKS:

- 1. Cloud Computing, Theory and Practice, Dan C Marinescu, 2nd edition, MK Elsevier, 2018.
- 2. Essentials of cloud Computing, K. Chandrasekhran, CRC press, 2014.
- 3. Online documentation and tutorials from cloud service providers (e.g., AWS, Azure, GCP)

III B.TECH II SEMESTER	L	Т	Р	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS		
	3	0	0	30	70	100	3		
SUBCODE: B23CS63	CRYPTOGRAPHY & NETWORK SECURITY								

COURSE OBJECTIVES

The main objectives of this course are to explore the working principles and utilities of various cryptographic algorithms including secret key cryptography, hashes and message digests, public key algorithms, design issues and working principles of various authentication protocols and various secure communication standards including Kerberos, IPsec, and SSL/TLS.

COURSE OUTCOMES: At the end of the course students will be able to

CO1: Apply modular arithmetic in modern cryptography

CO2: Make use of Substitution and transposition transformation Symmetric Encryption Algorithms

CO3: Make use of number theory knowledge in Asymmetric Encryption algorithms.

CO4: Analyze various Hash functions and digital signatures for online authentication

CO5: Analyze network security protocols for providing better security

SYLLABUS

UNIT-I

Basic Principles : Security Goals, Cryptographic Attacks, Services and Mechanisms, Mathematics of Cryptography- integer arithmetic, modular arithmetic, matrices, linear conguence.

UNIT-II

Symmetric Encryption: Mathematics of Symmetric Key Cryptography-algebraic structures, GF(2ⁿ) Fields, Introduction to Modern Symmetric Key Ciphers-modern block ciphers, modern stream ciphers, Data Encryption Standard- DES structure, DES analysis, Security of DES, Multiple DES, Advanced Encryption Standard-transformations, key expansions, AES ciphers, Analysis of AES.

UNIT-III

Asymmetric Encryption: Mathematics of Asymmetric Key Cryptography-primes, primality testing, factorization, CRT, Asymmetric Key Cryptography- RSA crypto system, Rabin cryptosystem, Elgamal Crypto system, ECC

UNIT-IV

Data Integrity, Digital Signature Schemes & Key Management : Message Integrity and Message Authentication-message integrity, Random Oracle model, Message authentication, Cryptographic Hash Functions-whirlpool, SHA-512, Digital Signature- process, services, attacks, schemes, applications, Key Management-symmetric key distribution, Kerberos.

UNIT-V

Network Security-I: Security at application layer: PGP and S/MIME, Security at the Transport Layer: SSL and TLS, **Network Security-II:** Security at the Network Layer: IPSec-two modes, two security protocols, security association, IKE, ISAKMP, System Security-users, trust, trusted

systems, buffer overflow, malicious software, worms, viruses, IDS, Firewalls.

TEXT BOOKS:

- 1. Cryptography and Network Security, 3rd Edition Behrouz A Forouzan, Deb deep Mukhopadhyay, McGraw Hill,2015
- 2. Cryptography and Network Security, 4th Edition, William Stallings, (6e) Pearson, 2006
- 3. Everyday Cryptography, 1st Edition, Keith M.Martin, Oxford,2016

REFERENCE BOOKS:

1. Network Security and Cryptography, 1st Edition, Bernard Meneges, Cengage Learning, 2018

III B.TECH II SEMESTER	L 3	T 0	P 0	INTERNAL MARKS 30	EXTERNAL MARKS 70	TOTAL MARKS	CREDITS 3		
SUBCODE: B23CS64A	SOFTWARE TESTING METHODOLOGIES								

COURSE OBJECTIVES

- To provide knowledge of the concepts in software testing such as testing process, criteria, strategies, and methodologies.
- To develop skills in software test automation and management using the latest tools.

COURSE OUTCOMES: At the end of the course students will be able to

- **CO1:** Apply fundamental testing concepts and models to identify bugs and evaluate software reliability using path and flow graphs
- **CO2:** Analyze transaction flow, data flow, and domain testing techniques to assess software test coverage and effectiveness.
- CO3: Use logic-based testing strategies, such as decision tables and path expressions, to design effective test cases
- **CO4:** Construct state graphs and perform transition testing to evaluate software behavior under different conditions.
- CO5: Implement software testing automation using tools like JMeter, Selenium, or SoapUI to validate software functionality and performance

SYLLABUS

UNIT-I

Introduction: Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs Flow graphs and Path testing: Basics concepts of path testing, predicates, path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing.

UNIT-II

Transaction Flow Testing: transaction flows, transaction flow testing techniques.

Data Flow testing: Basics of data flow testing, strategies in data flow testing, application of data flow testing.

Domain Testing: domains and paths, Nice & ugly domains, domain testing, domains and interfaces testing, domain and interface testing, domains and testability.

UNIT-III

Paths, Path products and Regular expressions: path products & path expression, reduction procedure, applications, regular expressions & flow anomaly detection.

Logic Based Testing: overview, decision tables, path expressions, kv charts, specifications.

UNIT-IV

State, State Graphs and Transition testing: state graphs, good & bad state graphs, state testing, Testability tips.

UNIT-V

Graph Matrices and Application: Motivational overview, matrix of graph, relations, power of a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool like Jmeter/selenium/soapUI/Catalon).

TEXT BOOKS

- 1. Software Testing techniques Baris Beizer, Dreamtech, second edition.
- 2. Software Testing Tools Dr. K. V. K. K. Prasad, Dreamtech.

REFERENCE BOOKS:

- 1. The craft of software testing Brian Marick, Pearson Education.
- 2. Software Testing Techniques SPD(Oreille)
- 3. Software Testing in the Real World Edward Kit, Pearson.
- 4. Effective methods of Software Testing, Perry, John Wiley.
- 5. Art of Software Testing Meyers, John Wiley.

SUBCODE: B23CS64B	1			CYI	BER SECURI	TY	
II SEIVIESTER	3	0	0	30 .	70	100	3
III B.TECH II SEMESTER	L	Т	Р	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS

COURSE OBJECTIVES:

The aim of the course is to

- identify security risks and take preventive steps
- understand the forensics fundamentals
- understand the evidence capturing process
- understand the preservation of digital evidence

COURSE OUTCOMES: At the end of the course students will be able to

CO1: Categorize cyber crimes and Role of Information System

CO2: Choose the right Tools and Techniques used in Cyber crimes

CO3: Examine various Investigative Techniques, encryption and data recovery methods

CO4: Evaluate computer forensics and Investigations in cyber crimes

CO5: Analyze the Legal aspects and consequences of legal non-compliance in the digital world

SYLLABUS

UNIT-I

Introduction to Cybercrime: Introduction, Cybercrime: Definition and Origins of the Word, Cybercrime and Information Security, Cybercriminals, Classifications of Cybercrime, Cyber stalking, Cyber cafe and Cybercrimes, Botnets. Attack Vector, Proliferation of Mobile and Wireless Devices, Security Challenges Posed by Mobile Devices, Attacks on Mobile/Cell Phones, Network and Computer Attacks.

UNIT-II

Tools and Methods: Proxy Servers and Anonymizers, Phishing, Password Cracking, Keyloggers and Spywares, Virusand Worms, Trojan Horsesand Backdoors, Steganography, Sniffers, S poofing, Session Hijacking Buffer over flow, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks, Identity Theft (ID Theft), Foot Printing and Social Engineering, Port Scanning, Enumeration.

UNIT-III

Cyber Crime Investigation: Introduction, Investigation L;LTools,e Discovery, Digital Evidence Collection, Evidence Preservation, E-Mail Investigation, E-Mail Tracking, IP Tracking, E-Mail Recovery, Hands on Case Studies. Encryption and Decryption Methods, Search and Seizure of Computers, Recovering Deleted Evidences, Password Cracking.

UNIT-IV

Computer Forensics and Investigations: Under standing Computer Forensics, Preparing for Computer Investigations. Current Computer Forensics Tools: Evaluating Computer Forensics Tools, Computer Forensics Software Tools, Computer Forensics Hardware Tools, Validating and

Testing Forensics Software, Face, Iris and Fingerprint Recognition, Audio Video Analysis, Windows System Forensics, Linux System Forensics, Graphics and Network Forensics, E-mail Investigations, Cell Phone and Mobile Device Forensics.

UNIT-V

Cyber Crime Legal Perspectives: Introduction, Cybercrime and the Legal Landscape around the World, The Indian ITAct, Challenges to Indian Lawand Cybercrime Scenario in India, Consequences of NotAddressing the Weakness in Information Technology Act, Digital Signatures and the Indian ITAct, Amendments to the Indian ITAct, Cybercrime and Punishment, Cyberlaw, Technology and Students: Indian Scenario.

TEXT BOOKS:

- 1. Sunit Belapure Nina Godbole "Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", WILEY, 2011.
- 2. Nelson Phillips and Enfinger Steuart, "Computer Forensics and Investigations", Cengage Learning, New Delhi, 2009.

REFERENCE BOOKS:

- 1. Michael T. Simpson, Kent Backman and James E. Corley, "Hands on Ethical Hacking and Network Defence", Cengage, 2019.
- 2. Computer Forensics, Computer Crime Investigation by John R. Vacca, Firewall Media, New Delhi.
- 3. Alfred Basta, Nadine Basta, Mary Brown and Ravinder Kumar "Cyber Security and Cyber Laws", Cengage, 2018.

E-RESOURCES:

锁

- 1. CERT-In Guidelines- http://www.cert-in.org.in/
- 2. https://www.coursera.org/learn/introduction-cybersecurity-cyber-attacks [Online Course]
- 3. https://computersecurity.stanford.edu/free-online-videos [Free Online Videos]
- 4. Nickolai Zeldovich. 6.858 Computer Systems Security. Fall 2014. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu License:Creative CommonsBY-NC-SA.

III B.TECH II SEMESTER	L	Т	Р	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
II SEIVIESTER	3	0	0	30	70	100	3
SUBCODE: B23CS64C					DEVOPS		

COURSE OBJECTIVES:

The main objectives of this course are to:

- Describe the agile relationship between development and IT operations.
- Understand the skill sets and high-functioning teams involved in DevOps and related methods to reach a continuous delivery capability.
- Implement automated system update and DevOps lifecycle.

COURSE OUTCOMES: At the end of the course students will be able to

- **CO1:** Apply the principles of the DevOps lifecycle and architecture to integrate DevOps practices within Agile and traditional SDLC-based software projects
- **CO2:** Apply version control operations using GIT and evaluate code quality through unit testing and tools like Sonar Qube
- CO3: Develop and manage continuous integration pipelines using Jenkins, including job scheduling, user roles, and master-slave configurations
- **CO4:** Implement containerization and continuous deployment workflows using Docker and test applications using Selenium
- **CO5:** Deploy and manage applications using configuration management tools such as Ansible, Kubernetes/Open Shift, Puppet, and Chef

SYLLABUS

UNIT-I

Introduction to DevOps: Introduction to SDLC, Agile Model. Introduction to Devops. DevOps Features, DevOps Architecture, DevOps Lifecycle, Understanding Workflow and principles, Introduction to DevOps tools, Build Automation, Delivery Automation, Understanding Code Quality, Automation of CI/ CD. Release management, Scrum, Kanban, delivery pipeline, bottlenecks, examples

UNIT-II

Source Code Management (GIT): The need for source code control, The history of source code management, Roles and code, source code management system and migrations. What is Version Control and GIT, GIT Installation, GIT features, GIT workflow, working with remote repository, GIT commands, GIT branching, GIT staging and collaboration. UNIT TESTING - CODE COVERAGE: Junit, nUnit & Code Coverage with Sonar Qube, SonarQube - Code Quality Analysis.

UNIT-III

Build Automation - Continuous Integration (CI): Build Automation, What is CI Why CI is Required, CI tools, Introduction to Jenkins (With Architecture), jenkins workflow, jenkins master slave architecture, Jenkins Pipelines, PIPELINE BASICS - Jenkins Master, Node, Agent, and Executor Freestyle Projects & Pipelines, Jenkins for Continuous Integration, Create and Manage

Builds, User Management in Jenkins Schedule Builds, Launch Builds on Slave Nodes.

UNIT-IV

Continuous Delivery (CD): Importance of Continuous Delivery, CONTINUOUS DEPLOYMENT CD Flow, Containerization with Docker: Introduction to Docker, Docker installation, Docker commands, Images & Containers, DockerFile, Running containers, Working with containers and publish to Docker Hub.

Testing Tools: Introduction to Selenium and its features, JavaScript testing

UNIT-V

Configuration Management - ANSIBLE: Introduction to Ansible, Ansible tasks, Roles, Jinja templating, Vaults, Deployments using Ansible.

CONTAINERIZATION USING KUBERNETES(OPENSHIFT): Introduction to Kubernetes Namespace & Resources, CI/CD - On OCP, BC, DC & ConfigMaps, Deploying Apps on Openshift Container Pods. Introduction to Puppet master and Chef.

TEXT BOOKS:

- 1. Joyner, Joseph., Devops for Beginners: Devops Software Development Method Guide for Software Developers and It Professionals, 1st Edition Mihails Konoplows, 2015.
- 2. Alisson Machado de Menezes., Hands-on DevOps with Linux,1st Edition, BPB Publications, India, 2021.

REFERENCE BOOKS:

- 1. Len Bass, Ingo Weber, Liming Zhu. DevOps: A Software Architect's Perspective. Addison Wesley; ISBN-10
- 2. Gene Kim Je Humble, Patrick Debois, John Willis. The DevOps Handbook, 1st Edition, IT Revolution Press, 2016.
- 3. Verona, Joakim Practical DevOps, 1st Edition, Packt Publishing, 2016.
- 4. Joakim Verona. Practical Devops, Ingram short title; 2nd edition (2018). ISBN10: 1788392574
- 5. Deepak Gaikwad, Viral Thakkar. DevOps Tools from Practitioner's Viewpoint. Wiley publications. ISBN: 9788126579952

SUBCODE: B23CS64D	bite 1	al Je	e tag	MAC	HINE LEAR	NING	
II SEMESTER	3	0	0	30	70	100	3
III B.TECH II SEMESTER	L	Т	Р	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS

COURSE OBJECTIVES:

The objectives of the course is to

- Define machine learning and its different types (supervised and unsupervised) and understand their applications.
- Apply supervised learning algorithms including decision trees and k-nearest neighbours (k-NN).
- Implement unsupervised learning techniques, such as K-means clustering.

COURSE OUTCOMES: At the end of the course students will be able to

- **CO1:** Understand the basic concepts, types of learning, and stages of the machine learning process
- CO2: Apply distance-based classifiers and Regressions such as KNN to solve real-world problems.
- CO3: Analyze and compare tree-based and probabilistic models like Decision Trees and Naïve Bayes.
- CO4: Design and evaluate linear and non-linear classifiers including SVM and MLP.
- CO5: Implement and evaluate unsupervised learning methods using various clustering techniques.

SYLLABUS

UNIT-I

Introduction to Machine Learning: Evolution of Machine Learning, Paradigms for ML, Learning by Rote, Learning by Induction, Reinforcement Learning, Types of Data, Matching, Stages in Machine Learning, Data Acquisition, Feature Engineering, Data Representation, Model Selection, Model Learning, Model Evaluation, Model Prediction, Search and Learning, Data Sets.

UNIT-II

Nearest Neighbor-Based Models: Introduction to Proximity Measures, Distance Measures, Non-Metric Similarity Functions, Proximity Between Binary Patterns, Different Classification Algorithms Based on the Distance Measures ,K-Nearest Neighbor Classifier, Radius Distance Nearest Neighbor Algorithm, KNN Regression, Performance of Classifiers, Performance of Regression Algorithms.

UNIT-III

Models Based on Decision Trees: Decision Trees for Classification, Impurity Measures, Properties, Regression Based on Decision Trees, Bias-Variance Trade-off, Random Forests for Classification and Regression. The Bayes Classifier: Introduction to the Bayes Classifier, Bayes' Rule and Inference, The Bayes Classifier and its Optimality, Multi-Class Classification, Class Conditional Independence and Naive Bayes Classifier (NBC)

UNIT-IV

Linear Discriminants for Machine Learning: Introduction to Linear Discriminants, Linear Discriminants for Classification, Perceptron Classifier, Perceptron Learning Algorithm, Support Vector Machines, Linearly Non-Separable Case, Non-linear SVM, Kernel Trick, Logistic Regression, Linear Regression, Multi-Layer Perceptrons (MLPs), Backpropagation for Training an MLP.

UNIT-V

Clustering: Introduction to Clustering, Partitioning of Data, Matrix Factorization, Clustering of Patterns, Divisive Clustering, Agglomerative Clustering, Partitional Clustering, K-Means Clustering, Soft Partitioning, Soft Clustering, Fuzzy C-Means Clustering, Rough Clustering, Rough K-Means Clustering Algorithm, Expectation Maximization-Based Clustering, Spectral Clustering.

TEXT BOOKS:

1. "Machine Learning Theory and Practice", M N Murthy, V S Ananthanarayana, Universities Press (India), 2024

REFERENCE BOOKS

- 1. "Machine Learning", Tom M. Mitchell, McGraw-Hill Publication, 2017
- 2. "Machine Learning in Action", Peter Harrington, DreamTech
- 3. "Introduction to Data Mining", Pang-Ning Tan, Michel Stenbach, Vipin Kumar, 7th Edition, 2019.

III B.TECH II SEMESTER	L	Т	Р	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS			
II SUMESTER	3	0	0	30	70	100	3			
SUBCODE:										
B23CS65A		SOFTWARE PROJECT MANAGEMENT								

COURSE OBJECTIVES:

At the end of the course, the student shall be able to:

- To describe and determine the purpose and importance of project management from the perspectives of planning, tracking and completion of project
- To compare and differentiate organization structures and project structures
- To implement a project to manage project schedule, expenses and resources with the application of suitable project management tools

COURSE OUTCOMES: At the end of the course students will be able to

CO1: Apply the concepts to be followed in the conventional software management Apply

CO2: Apply the process model to perform software life cycle phases

CO3: Implement the project architecture based on different techniques and plans

CO4: Make use of responsibilities and activities to complete software projects successfully

CO5: Apply concepts of Agility and DevOps to perform software projects

SYLLABUS

UNIT-I

Conventional Software Management: The waterfall model, conventional software Management performance.

Evolution of Software Economics: Software Economics, pragmatic software cost estimation.

Improving Software Economics: Reducing Software product size, improving software processes, improving team effectiveness, improving automation, Achieving required quality, peer inspections.

The old way and the new: The principles of conventional software Engineering, principles of modern software management, transitioning to an iterative process.

UNIT-II

Life cycle phases: Engineering and production stages, inception, Elaboration, construction, transition phases.

Artifacts of the process: The artifact sets, Management artifacts, Engineering artifacts, programmatic artifacts.

UNIT-III

Model based software architectures: A Management perspective and technical perspective.

Work Flows of the process: Software process workflows, Iteration workflows.

Checkpoints of the process: Major mile stones, Minor Milestones, Periodic status assessments. Iterative Process Planning: Work breakdown structures, planning guidelines, cost and schedule estimating, Iteration planning process, Pragmatic planning.

UNIT-IV

Project Organizations and Responsibilities: Line-of-Business Organizations, Project Organizations, evolution of Organizations.

Process Automation: Automation Building blocks, The Project Environment.

Project Control and Process instrumentation: The seven core Metrics, Management indicators, quality indicators, life cycle expectations, pragmatic Software Metrics, Metrics automation.

UNIT-V

Agile Methodology, ADAPTing to Scrum, Patterns for Adopting Scrum, Iterating towards Agility. **Fundamentals of DevOps**: Architecture, Deployments, Orchestration, Need, Instance of applications, DevOps delivery pipeline, DevOps eco system. DevOps adoption in projects: Technology aspects, Agiling capabilities, Tool stack implementation, People aspect, processes

TEXT BOOKS:

- 1. Software Project Management, Walker Royce, PEA, 2005.
- 2. Succeeding with Agile: Software Development Using Scrum, Mike Cohn, Addison Wesley.
- 3. The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations, Gene Kim, John Willis, Patrick Debois, Jez Humb, 1st Edition, O'Reilly publications, 2016.

REFERENCE BOOKS:

- 1. Software Project Management, Bob Hughes, 3/e, Mike Cotterell, TMH
- 2. Software Project Management, Joel Henry, PEA
- 3. Software Project Management in practice, Pankaj Jalote, PEA, 2005,
- 4. Effective Software Project Management, Robert K. Wysocki, Wiley, 2006.
- 5. Project Management in IT, Kathy Schwalbe, Cengage

SUBCODE: B23CS65B				MOBILE	ADHOC NE	ΓWORKS	VILIDA
II SEMESTER	3	0	0	30	70	100	3
III B.TECH II SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS

COURSE OBJECTIVES:

From the course the student will learn

- Architect sensor networks for various application setups.
- Devise appropriate data dissemination protocols and model links cost.
- Understanding of the fundamental concepts of wireless sensor networks and has a basic knowledge of the various protocols at various layers.
- Evaluate the performance of sensor networks and identify bottlenecks.

COURSE OUTCOMES: At the end of the course students will be able to

- CO1: Apply fundamental concepts of Ad Hoc and Wireless Sensor Networks (WSNs) to analyze their architecture, applications, and associated challenges.
- CO2: Design routing and transport layer protocols for Ad Hoc networks considering design constraints and performance requirements
- CO3: Analyze security challenges and apply security protocols in Ad Hoc and Wireless Sensor Networks to protect against attacks
- CO4: Model and evaluate data communication and energy consumption in sensor network deployments under various application scenarios
- CO5: Implement and simulate WSN systems using sensor operating systems (TinyOS, TOSSIM) and node-level tools to assess network behavior.

SYLLABUS

UNIT-I

Introduction to Ad Hoc Wireless Networks- Cellular and Ad Hoc Wireless Networks, Characteristics of MANETs, Applications of MANETs, Issues and Challenges of MANETs, Ad Hoc Wireless Internet, MAC protocols for Ad hoc Wireless Networks-Issues, Design Goals and Classifications of the MAC Protocols.

UNIT-II

Routing Protocols for Ad Hoc Wireless Networks- Issues in Designing a Routing Protocol, Classifications of Routing Protocols, Topology-based versus Position-based Approaches, Issues and design goals of a Transport layer protocol, Classification of Transport layer solutions, TCP over Ad hoc Wireless Networks, Solutions for TCP over Ad Hoc Wireless Networks, Other Transport layer protocols.

UNIT-III

Security protocols for Ad hoc Wireless Networks- Security in Ad hoc Wireless Networks, Network Security Requirements, Issues and Challenges in Security Provisioning, Network Security Attacks, Key Management, Secure Routing in Ad hoc Wireless Networks, Cooperation in MANETs, Intrusion Detection Systems.

UNIT-IV

Basics of Wireless Sensors and Applications- The Mica Mote, Sensing and Communication Range, Design Issues, Energy Consumption, Clustering of Sensors, Applications, Data Retrieval in Sensor Networks-Classification of WSNs, MAC layer, Routing layer, Transport layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs.

UNIT-V

Security in WSNs- Security in WSNs, Key Management in WSNs, Secure Data Aggregation in WSNs, Sensor Network Hardware-Components of Sensor Mote, Sensor Network Operating Systems—TinyOS, LA-TinyOS, SOS, RETOS, Imperative Language-nesC, **Dataflow Style Language-**TinyGALS, Node-Level Simulators, NS-2 and its sensor network extension, TOSSIM.

TEXT BOOKS:

- 1.Ad Hoc Wireless Networks Architectures and Protocols, 1st edition, C. Siva Ram Murthy, B. S. Murthy, Pearson Education, 2004
- 2.Ad Hoc and Sensor Networks Theory and Applications, 2nd edition *Carlos Corderio Dharma P.Aggarwal*, World Scientific Publications / Cambridge University Press, March 2006

REFERENCE BOOKS:

- 1. Wireless Sensor Networks: An Information Processing Approach, 1st edition, *Feng Zhao, Leonidas Guibas*, Elsevier Science imprint, Morgan Kauffman Publishers, 2005, rp2009
- 2. Wireless Ad hoc Mobile Wireless Networks Principles, Protocols and Applications, 1st edition, Subir Kumar Sarkar, et al., Auerbach Publications, Taylor & Francis Group, 2008
- 3. Ad hoc Networking, 1st edition, Charles E. Perkins, Pearson Education, 2001
- 4. Wireless Ad hoc Networking, 1st edition, *Shih-Lin Wu, Yu-Chee Tseng*, Auerbach Publications, Taylor & Francis Group, 2007
- 5. Wireless Sensor Networks Principles and Practice, 1st edition, Fei Hu, Xiaojun Cao, An Auerbach book, CRC Press, Taylor & Francis Group, 2010

SUBCODE: B23CS65C	d da dê.	250,00	N	ATURAL LA	ANGUAGE P	PROCESS	ING
II SENIESTER	3	0	0	30	70	100	3
III B.TECH	L	T	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS

COURSE OBJECTIVES:

This course introduces the fundamental concepts and techniques of natural language processing (NLP).

- Students will gain an in-depth understanding of the computational properties of natural languages and the commonly used algorithms for processing linguistic information.
- The course examines NLP models and algorithms using both the traditional symbolic and the more recent statistical approaches.
- Enable students to be capable to describe the application based on natural language processing and to show the points of syntactic, semantic and pragmatic processing.

COURSE OUTCOMES: At the end of the course students will be able to

CO1: Identify a given text with basic Language features

CO2: To design an innovative application using NLP components

CO3: Construct a rule based system to tackle morphology/syntax of a language

CO4: Design a tag set to be used for statistical processing for real-time applications

CO5: To compare and contrast the use of different statistical approaches for different types of NLP applications.

SYLLABUS

UNIT-I

INTRODUCTION: Origins and challenges of NLP – Language Modeling: Grammar-based LM, Statistical LM – Regular Expressions, Finite-State Automata – English Morphology, Transducers for lexicon and rules, Tokenization, Detecting and Correcting Spelling Errors, Minimum Edit Distance.

UNIT-II

WORD LEVEL ANALYSIS: Unsmoothed N-grams, Evaluating N-grams, Smoothing, Interpolation and Back off – Word Classes, Part- of-Speech Tagging, Rule-based, Stochastic and Transformation-based tagging, Issues in PoS tagging – Hidden Markov and Maximum Entropy models.

UNIT-III

SYNTACTIC ANALYSIS: Context-Free Grammars, Grammar rules for English, Treebanks, Normal Forms for grammar – Dependency Grammar – Syntactic Parsing, Ambiguity, Dynamic Programming parsing – Shallow parsing Probabilistic CFG, Probabilistic CYK, Probabilistic Lexicalized CFGs – Feature structures, Unification of feature structures

UNIT-IV

SEMANTICS AND PRAGMATICS: Requirements for representation, First-Order Logic, Description Logics – Syntax-Driven Semantic analysis, Semantic attachments – Word Senses, Relations between Senses, Thematic Roles, selectional restrictions – Word Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus, Bootstrapping methods – Word Similarity using Thesaurus and Distributional methods.

UNIT-V

DISCOURSE ANALYSIS AND LEXICAL RESOURCES: Discourse segmentation, Coherence – Reference Phenomena, Anaphora Resolution using Hobbs and Centering Algorithm – Coreference Resolution – Resources: Porter Stemmer, Lemmatizer, Penn Treebank, Brill's Tagger, WordNet, PropBank, FrameNet, Brown Corpus, British National Corpus (BNC).

TEXT BOOKS:

- Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech, 2ndEdition, Daniel Jurafsky, James H. Martin -Pearson Publication, 2014.
- 2. Natural Language Processing with Python, First Edition, Steven Bird, Ewan Klein and Edward Loper, OReilly Media, 2009.

REFERENCE BOOKS:

- 1. Language Processing with Java and Ling Pipe Cookbook, 1stEdition, Breck Baldwin, Atlantic Publisher, 2015.
- 2. Natural Language Processing with Java, 2ndEdition, Richard M Reese, OReilly Media,2015.
- 3. Handbook of Natural Language Processing, Second, NitinIndurkhya and Fred J. Damerau, Chapman and Hall/CRC Press, 2010.Edition
- 4. Natural Language Processing and Information Retrieval, 3rdEdition, TanveerSiddiqui, U.S. Tiwary, Oxford University Press,2008.

III B.TECH II SEMESTER	L	Т	Р	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
TI ODIVIDOTER	3	0	0	30	70	100	3
SUBCODE: B23CS65D				BIG D	ATA ANALY	TICS	Tal Age.

COURSE OBJECTIVES:

This course is aimed at enabling the students to

- To provide an overview of an exciting growing field of big data analytics.
- To introduce the tools required to manage and analyze big data like Hadoop, NoSQL, Map Reduce, HIVE, Cassandra, Spark.
- To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.
- To optimize business decisions and create competitive advantage with Big Data analytics

COURSE OUTCOMES: At the end of the course students will be able to

CO1: Understand Big Data and its analytics in the real world

CO2: Analyze the Big Data framework like Hadoop and NOSQL to efficiently store and process Big Data to generate analytics

CO3: Explain HDFS & Big Data Activities using Hive

CO4: Design and Implementation of Big Data Analytics using Apache - spark to solve data intensive problems and to generate analytics.

CO5: Apply Advance concepts related to big data in projects/real life scenarios

SYLLABUS

UNIT-I

big data, convergence of key trends, unstructured data, industry examples of big data, web analytics, big data and marketing, fraud and big data, risk and big data, credit risk management, big data and algorithmic trading, big data and healthcare, big data in medicine, advertising and big data, big data technologies, introduction to Hadoop, open source technologies, cloud and big data, mobile business intelligence, Crowd sourcing analytics, inter and trans firewall analytics.

UNIT-II

Introduction to NoSQL, aggregate data models, aggregates, key-value and document data models, relationships, graph databases, schema less databases, materialized views, distribution models, sharding, master-slave replication, peer- peer replication, shardingand replication, consistency, relaxing consistency, version stamps, Working with Cassandra ,Table creation, loading and reading data.

UNIT-III

Data formats, analyzing data with Hadoop, scaling out, Architecture of Hadoop distributed file system (HDFS), fault tolerance ,with data replication, High availability, Data locality, Map Reduce Architecture, Process flow, Java interface, data flow, Hadoop I/O, data integrity, compression, serialization. Introduction to Hive, data types and file formats, HiveQL data definition, HiveQL data manipulation, Logical joins, Window functions, Optimization, Table partitioning, Bucketing, Indexing, Join strategies.

UNIT-IV

Apache spark- Advantages over Hadoop, lazy evaluation, In memory processing, DAG, Spark context, Spark Session, RDD, Transformations- Narrow and Wide, Actions, Data frames ,RDD to Data frames, Catalyst optimizer, Data Frame Transformations, Working with Dates and Timestamps, Working with Nulls in Data, Working with Complex Types, Working with JSON, Grouping, Window Functions, Joins, Data Sources, Broadcast Variables, Accumulators, Deploying Spark- On-Premises Cluster Deployments, Cluster Managers- Standalone Mode, Spark on YARN, Spark Logs, The Spark UI- Spark UI History Server, Debugging and Spark First Aid

UNIT-V

Spark-Performance Tuning, Stream Processing Fundamentals, Event-Time and State full Processing - Event Time, State full Processing, Windows on Event Time- Tumbling Windows, Handling Late Data with Watermarks, Dropping Duplicates in a Stream, Structured Streaming Basics - Core Concepts, Structured Streaming in Action, Transformations on Streams, Input and Output.

TEXT BOOKS

- 1. Big Data, Big Analytics: Emerging, Michael Minnelli, Michelle Chambers, and AmbigaDhiraj, 1st edition ,2013
- 2. SPARK: The Definitive Guide, Bill Chambers & MateiZaharia, O'Reilley, 2018-first Edition.
- 3. Business Intelligence and Analytic Trends for Today's Businesses", Wiley, First edition-2013.
- 4. P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the Emerging World Polyglot Persistence", Addison-Wesley Professional, 2012
- 5. Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012

REFERENCE BOOKS

- 1. "Hadoop Operations", O'Reilley, Eric Sammer, First Edition -2012.
- 2. "Programming Hive", O'Reilley, E. Capriolo, D. Wampler, and J. Rutherglen, 2012.
- 3. "HBase: The Definitive Guide", O'Reilley, Lars George, September 2011: First Edition..
- 4. "Cassandra: The Definitive Guide", O'Reilley, Eben Hewitt, 2010.
- "Programming Pig", O'Reilley, Alan Gates, October 2011: First Edition

III B.TECH II SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
II SEMESTER	3	0	0	30	70	100	3
SUBCODE: B23CS65E		•	D	ISTRIBUTE	D OPERATI	NG SYST	EM

COURSE OBJECTIVES:

The main objective of the course is to introduce design issues and different message passing techniques in DOS, distributed systems, RPC implementation and its performance in DOS, distributed shared memory and resource management, distributed file systems and evaluate the performance in terms of fault tolerance, file replication as major factors

COURSE OUTCOMES:

At the end of the course students will be able to

CO1: Classify hardware and software issues in modern distributed systems.

CO2: Analyze distributed architecture, The RPC Model

CO3: Identify Shared Memory Techniques

CO4: Make use of distributed Resource Management

CO5: Examine Sufficient knowledge about file access.

SYLLABUS

UNIT-I

Fundamentals:

What is Distributed Computing Systems? Evolution of Distributed Computing System; Distributed Computing System Models; What is Distributed Operating System? Issues in Designing a Distributed Operating System; Introduction to Distributed ComputingEnvironment(DCE).

Message Passing:

Introduction, Desirable features of a Good Message Passing System, Issues in PC by Message Passing, Synchronization, Buffering, Multi-datagram Messages, Encoding and Decoding of Message Data, Process Addressing, Failure Handling, Group Communication, Case Study: 4.3 BSD UNIX IPC Mechanism.

UNIT-II

Remote Procedure Calls:

Introduction, The RPC Model, Transparency of RPC, Implementing RPC Mechanism, Stub Generation, RPC Messages, Marshaling Arguments and Results, Server Management, Parameter-Passing Semantics, Call Semantics, Communication Protocols for RPCs, Complicated RPCs, Client-Server Binding, Exception Handling, Security, Some Special Types of RPCs, RPC in Heterogeneous Environments, Lightweight RPC, Optimization for Better Performance, Case Studies: Sun RPC

UNIT-III

Distributed Shared Memory:

Introduction, General Architecture of DSM systems, Design and Implementation Issues of DSM, Granularity, Structure of Shared Memory Space, Consistency Models, Replacement Strategy,

Thrashing, Other approaches to DSM, Heterogeneous DSM, Advantages of DSM. Synchronization: Introduction, Clock Synchronization, Event Ordering, Mutual Exclusion, Dead Lock, Election Algorithms

UNIT-IV

Resource Management:

Introduction, Desirable Features of a Good Global Scheduling Algorithm, Task Assignment Approach, Load – Balancing Approach, Load – Sharing Approach Process Management: Introduction, Process Migration, Threads.

UNIT-V

Distributed File Systems:

Introduction, Desirable Features of a Good Distributed File System, File models, File—Accessing Models, File – Sharing Semantics, File – Caching Schemes, File Replication, Fault Tolerance, Atomic Transactions and Design Principles.

TEXT BOOKS:

1. Pradeep. K. Sinha: Distributed Operating Systems: Concepts and Design, PHI, 2007.

REFERENCE BOOKS:

- 1. Andrew S. Tanenbaum: Distributed Operating Systems, Pearson Education, 2013.
- 2. Ajay D. Kshemkalyani and MukeshSinghal, Distributed Computing: Principles, Algorithms and Systems, Cambridge University Press, 2008
- 3. SunitaMahajan, Seema Shan, "Distributed Computing", Oxford University Press, 2015

II SEMESTER SUBCODE:	0	0	3	MARKS MARKS 30 70	100	1.5
B23CS66				CLOUD COMPUTIN	NG LAB	

COURSE OBJECTIVES:

- To introduce the various levels of services offered by cloud.
- To give practical knowledge about working with virtualization and containers.
- To introduce the advanced concepts such as server less computing and cloud simulation.

COURSE OUTCOMES: At the end of the course, the student should be able to

- 1. Demonstrate various service types, delivery models and technologies of a cloud computing environment.
- 2. Distinguish the services based on virtual machines and containers in the cloud offerings.
- 3. Assess the challenges associated with a cloud-based application.
- 4. Discuss advanced cloud concepts such as server less computing and cloud simulation.
- 5. Examine various programming paradigms suitable to solve real world and scientific problems using cloud services.

SYLLABUS

List of Experiments:

- 1. Lab on web services
- 2. Lab on IPC, messaging, publish/subscribe
- 3. Install Virtual Box/VMware Workstation with different flavours of Linux or windows OS on top of windows8 or above.
- 4. Install a C compiler in the virtual machine created using Virtual Box and execute Simple Programs.
- 5. Create an Amazon EC2 instance and set up a web-server on the instance and associate an IP address with the instance. In the process, create a security group allowing access to port 80 on the instance.

OR

- 6. Do the same with Open Stack
- 7. Install Google App Engine. Create a hello world app and other simple web applications using python/java.
- 8. Start a Docker container and set up a web-server (e.g. apache2 or Python based Flask micro web framework) on the instance. Map the host directory as a data volume for the container.
- 9. Find a procedure to transfer the files from one virtual machine to another virtual machine. Similarly, from one container to another container.
- 10. Find a procedure to launch virtual machine using try stack (Online Open stack Demo Version)
- 11. Install Hadoop single node cluster and run simple applications like word count.
- 12. Utilize OpenFaaS Serverless computing framework and demonstrate basic event driven function invocation.

13. Simulate a cloud scenario using CloudSim and run a scheduling algorithm that is not present in CloudSim.

TEXT BOOKS:

- 1. Mastering Cloud Computing, 2nd edition, Rajkumar Buyya, Christian Vecchiola, Thamarai Selvi, Shivananda Poojara, Satish N. Srirama, McGraw Hill, 2024.
- 2. Distributed and Cloud Computing, Kai Hwang, Geoffery C. Fox, Jack J. Dongarra, Elsevier, 2012.

REFERENCE BOOKS:

- 1. Cloud Computing, Theory and Practice, Dan C Marinescu, 2nd edition, MK Elsevier, 2018.
- 2. Cloud Computing: Principles and Paradigms by Rajkumar Buyya, James Broberg and Andrzej M. Goscinski, Wiley, 2011.
- 3. Online documentation and tutorials from cloud service providers (e.g. AWS, Google App Engine)
- 4. Docker, Reference documentation, https://docs.docker.com/reference/
- 5. Open FaaS, Serverless Functions Made Simple, https://docs.openfaas.com/

III B.TECH II SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
II SEMESTER	0	0	3	30	70	100	1.5
SUBCODE: B23CS67	CR	YP?	ГО	GRAPHY &	NETWORK	SECURI	ΓΥ LAB

COURSE OBJECTIVES

- To learn basic understanding of cryptography, how it has evolved, and some key encryption techniques used today.
- To understand and implement encryption and decryption using C easer Cipher, Substitution Cipher, Hill Cipher.

SYLLABUS

List of Experiments:

- 1. Write a C program that contains a string (char pointer) with a value \Hello World'. The program should XOR each character in this string with 0 and displays the result.
- 2. Write a C program that contains a string (char pointer) with a value \Hello World'. The program should AND or and XOR each character in this string with 127 and display the result
- 3. Write a Java program to perform encryption and decryption using the following algorithms:
 - a) Ceaser Cipher
 - b) Substitution Cipher
 - c) Hill Cipher
- 4. Write a Java program to implement the DES algorithm logic
- 5. Write a C/JAVA program to implement the BlowFish algorithm logic
- 6. Write a C/JAVA program to implement the Rijndael algorithm logic.
- 7. Using Java Cryptography, encrypt the text "Hello world" using BlowFish. Create your own key using Java key tool.
- 8. Write a Java program to implement RSA Algorithm
- 9. Implement the Diffie-Hellman Key Exchange mechanism using HTML and JavaScript. Consider the end user as one of the parties (Alice) and the JavaScript application as other party (bob).
- 10. Calculate the message digest of a text using the SHA-1 algorithm in JAVA.

SUBCODE:	0	1	2	30	70 OFT SKILL	100	2
III B.TECH II SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS

COURSE OBJECTIVES:

- To equip the students with the skills to effectively communicate in English
- To train the students in interview skills, group discussions and presentation skills
- To motivate the students to develop confidence
- To enhance the students' interpersonal skills
- To improve the students' writing skills

COURSE OUTCOMES: At the end of the course students will be able to

CO1: Understand the corporate etiquette.

CO2: Make presentations effectively with appropriate body language

CO3: Students able to understand enhance their writing abilities

CO4: Be composed with positive attitude

CO5: Understand the core competencies to succeed in professional and personal life

SYLLABUS

UNIT-I

Analytical Thinking & Listening Skills: Self-Introduction, Shaping Young Minds - A Talk by Azim Premji (Listening Activity), Self – Analysis, Developing Positive Attitude, Perception. **Communication Skills:** Verbal Communication; Non Verbal Communication (Body Language)

UNIT-II

Self-Management Skills: Anger Management, Stress Management, Time Management, Six Thinking Hats, Team Building, Leadership Qualities

Etiquette: Social Etiquette, Business Etiquette, Telephone Etiquette, Dining Etiquette

UNIT-III

Standard Operation Methods: Basic Grammars, Tenses, Prepositions, Pronunciation, Letter Writing; Note Making, Note Taking, Minutes Preparation, Email & Letter Writing

UNIT-IV

Job-Oriented Skills: Group Discussion, Mock Group Discussions, Resume Preparation, Interview Skills, Mock Interviews

UNIT-V

Interpersonal relationships: Introduction, Importance, Types, Uses, Factors affecting interpersonal relationships, Accommodating different styles, Consequences of interpersonal relationships

TEXT BOOKS:

- 1. Barun K. Mitra, Personality Development and Soft Skills, Oxford University Press, 2011.
- 2. S.P. Dhanavel, English and Soft Skills, Orient Blackswan, 2010.

3.

REFERENCE BOOKS:

- 1. R.S.Aggarwal, A Modern Approach to Verbal & Non-Verbal Reasoning, S.Chand& Company Ltd., 2018.
- 2. Raman, Meenakshi& Sharma, Sangeeta, Technical Communication Principles and Practice, Oxford University Press, 2011.

E-resources:

1. https://swayam-plus.swayam2.ac.in/courses/course-details?id=P_CAMBR_01

SUBCODE: B23CC6A			T	ECHNICAL	PAPER WR	ITING &	IPR
II SEVILSTER	2	0	0	30	70	100	-
III B.TECH II SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS

COURSE OBJECTIVE

The course will explain the basic related to writing the technical reports and understanding the concepts related to formatting and structuring the report. This will help students to comprehend the concept of proofreading, proposals and practice

COURSE OUTCOMES: At the end of the course students will be able to

CO1: Understand the structure of the technical paper and its components

CO2: Review the literature and acquire the skills to write a technical paper for first submission

CO3: Understand the process and development of IPR.

CO4: Create awareness about the scope of patent rights.

CO5: Analyze the new developments in IPR include latest software

SYLLABUS

UNIT-I

Introduction: An introduction to writing technical reports, technical sentences formation, using transitions to join sentences, Using tenses for technical writing.

Planning and Structuring: Planning the report, identifying reader(s), Voice, Formatting and structuring the report, Sections of a technical report, Minutes of meeting writing.

UNIT-II

Drafting report and design issues: The use of drafts, Illustrations and graphics.

Final edits: Grammar, spelling, readability and writing in plain English: Writing in plain English, Jargon and final layout issues, Spelling, punctuation and Grammar, Padding, Paragraphs, Ambiguity.

UNIT-III

Proofreading and summaries: Proofreading, summaries, Activities on summaries. **Presenting final reports:** Printed presentation, Verbal presentation skills, Introduction to proposals and practice.

UNIT-IV

Using word processor:

Adding a Table of Contents, Updating the Table of Contents, Deleting the Table of Contents, Adding an Index, Creating an Outline, Adding Comments, Tracking Changes, Viewing Changes, Additions, and Comments, Accepting and Rejecting Changes, Working with Footnotes and Endnotes, Inserting citations and Bibliography, Comparing Documents, Combining Documents, Mark documents final and make them read only., Password protect Microsoft Word documents., Using Macros,

UNIT-V

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property

TEXT BOOKS:

- 1. Kompal Bansal & Parshit Bansal, "Fundamentals of IPR for Beginner's", 1st Ed., BS Publications, 2016.
- 2. William S. Pfeiffer and Kaye A. Adkins, "Technical Communication: A Practical Approach", Pearson.
- 3. Ramappa, T., "Intellectual Property Rights Under WTO", 2nd Ed., S Chand, 2015.

REFERENCE BOOKS:

- 1. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011.
- 2. Day R, How to Write and Publish a Scientific Paper, Cambridge University Press(2006)

E-resources:

- 1. https://www.udemy.com/course/reportwriting/
- 2. https://www.udemy.com/course/professional-business-english-and-technical-report-writing/
- 3. https://www.udemy.com/course/betterbusinesswriting/

Open Electives, offered to other department students:

Open Elective I: Principles of Operating Systems/ Computer Organization and Architecture

Open Elective II: Principles of Database Management Systems

Open Elective III: Object Oriented Programming Through Java

Open Elective IV: Principles of Software Engineering /Computer Networks Open Elective V: Interdiction to Artificial Intelligence & Machine Learning

Minor Engineering

Note:

- 1. To obtain Minor Engineering, student needs to obtain 18 credits by successfully completing any of the following courses in the concern stream.
- 2. During Minor/Honors Course selection, there should not be any overlapping with Regular/Major/OPEN Electives

Minor in CSE

1. Principles of Database Management Systems	3-0-3-4.5 (II-II)
2. Principles of Software Engineering	3-0-0-3 (III-I)
3. Advanced Data Structures & Algorithm Analysis	3-0-3-4.5 (III-II)
4. Principles of Operating Systems	3-0-0-3 (IV-I)
Any of the following 12 Week 3 gradit NDTEL MOOG	· /

- Any of the following 12 Week 3 credit NPTEL MOOC Courses
 5. Artificial Intelligence: Knowledge Representation and Reasoning
- 6. Computer Networks and Internet Protocol
- 7. Machine Learning and Deep Learning Fundamentals and Applications
- 8. Fundamentals of Object Oriented Programming
- 9. Discrete Mathematics for CS
- 10. Software Engineering

COURSES OFFERED FOR HONORS DEGREE IN CSE

Note: To obtain Honor's degree, student needs to obtain 18 credits by successfully completing any of the following courses in the concern stream.

1.	Social Network Analysis	12 Week 3 Credit Course, MOOCS
2.	Applied Linear Algebra in AI & ML	12 Week 3 Credit Course, MOOCS
3.	Design & Implementation of Human-Compu	nter Interfaces – NPTEL MOOCS
4.	Cryptography and Network Security	12 Week 3 Credit Course, MOOCS
5.	Privacy and Security in Online Social Media	12 Week 3 Credit Course, MOOCS
6.	Deep Learning for Natural Language Proces	sing - 12 Week 3 Credit Course, MOOCS
7.	Computer Vision	- 12 Week 3 Credit Course, MOOCS
8.	Applied Time-Series Analysis	12 Week 3 Credit Course, MOOCS
9.	Parallel Computer Architecture	12 Week 3 Credit Course, MOOCS
10.	Reinforcement Learning	12 Week 3 Credit Course, MOOCS
11.	GPU Architecture and Programming	12 Week 3 Credit Course, MOOCS
12.	Computational Complexity	12 Week 3 Credit Course, MOOCS
13.	Quantum Algorithms and Cryptography	12 Week 3 Credit Course, MOOCS
14.	Unmanned Arial Systems & Robotics	12 Week 3 Credit Course, MOOCS
15.	Prompt Engineering for Generative AI	u (III - II) er

1.	Computer Networks	3-0-0-3
2.	Artificial Intelligence	3-0-0-3
3.	Cyber Security	3-0-0-3
4.	Introduction to Data Science	3-0-3-4.5
5.	Data Warehousing and Data Mining	3-0-0-3
6.	Object Oriented Programming Through Java	3-0-3-4.5
7.	Cloud computing	3-0-0-3
8.	Graph Theory	3-0-0-3
9.	Data Analytics with Python	
10.	Foundations of Cryptography	

III B.TECH I SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
I DEMILOTEK	3	-	-	30	70	100	3
SUBCODE: B23CSO1A		PR]	INC		OPERATION DE L'OPERATION DE L'OPERAT	NG SYST	TEMS

COURSE OBJECTIVES

The main objectives of the course is to make student

- Understand the basic concepts and principles of operating systems, including process management, memory management, file systems, and Protection
- Make use of process scheduling algorithms and synchronization techniques to achieve better performance of a computer system.
- Illustrate different conditions for deadlock and their possible solutions.

COURSE OUTCOMES:

At the end of the course students will be able to

- CO1: Make use of Different operating System Services and Implement System calls for the Services
- CO2: Examine Different types of Algorithms for Process Scheduling and Compare the Scheduling Criteria
- CO3: Organize Different Synchronization Tools for Concurrency and use different Mechanisms for Deadlock free
- **CO4**: Organize Different Memory Management Strategies and Operate Different Algorithms Storage structure,
- CO5: Organize File System management and Different File System protection Mechanisms

SYLLABUS

UNIT-I

Operating Systems Overview: Introduction, Operating system functions, Operating systems operations, Computing environments, Free and Open-Source Operating Systems System Structures: Operating System Services, User and Operating-System Interface, system calls, Types of System Calls.

UNIT-II

Processes: Process Concept, Process scheduling, Operations on processes, Interprocess communication. Threads and Concurrency: Multithreading models, Thread libraries, Threading issues. CPU Scheduling: Basic concepts, Scheduling criteria, Scheduling algorithms.

UNIT-III

Synchronization Tools: The Critical Section Problem, Peterson's Solution, Mutex Locks, Semaphores, Monitors, Classic problems of Synchronization. Deadlocks: system Model, Deadlock characterization, Methods for handling Deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from Deadlock.

UNIT-IV

Memory-Management Strategies: Introduction, Contiguous memory allocation, Paging, Structure of the Page Table, Swapping.
Virtual Memory Management: Introduction, Demand paging, Copy-on-write, Page replacement, Allocation of frames, Thrashing

UNIT-V

File System: File System Interface: File concept, Access methods, Directory Structure; File system Implementation: File-system structure, File-system Operations, Directory implementation, Allocation method, Frees pace Management, Disk Structure, Disk Scheduling.

TEXTBOOKS

1. Operating System Concepts, Silbers chatzA, GalvinPB, GagneG, 10thEdition, Wiley, 2018.

2. ModernOperatingSystems,TanenbaumAS,4thEdition, Pearson, 2016

REFERENCEBOOKS

1. OperatingSystems-InternalsandDesignPrinciples,StallingsW,9th edition, Pearson, 2018

2. OperatingSystems:AConceptBasedApproach,D.MDhamdhere,3rd Edition, McGraw-Hill, 2013

Online Learning Resources

https://nptel.ac.in/courses/106/106/106106144/http://peterindia.net/OperatingSystems.html

	III B.TECH I SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
		3	-	100	30	70	100	3
	SUBCODE: B23CSO1B	COI	MPU	JTE		IZATION AN Open Elective I	ND ARCH	ITECTURE

COURSEOBJECTIVES:

The main objectives of the course is to

- Provide students with a comprehensive understanding of digital logic design principles and computer organization fundamentals
- Describe memory hierarchy concepts
- Explain input/output(I/O)systems and their interaction with the CPU, memory, and peripheral devices

Commence of the state of the st

COURSE OUTCOMES:

Student should be able to:

- CO1: Analyze Digital Circuits using Binary Number systems, Boolean Algebra, K-maps.
- CO2: Analyze the design procedures of Sequential circuits and identify functional units of a computer and register transfer operations
- CO3: Identify appropriate addressing modes for specifying the location of an operand and the design of Hardwired and Micro programmed control unit
- **CO4:** Analyze the concepts of memory organization its impact on computer cost/performance.
- CO5: Organize the different ways of communicating with I/O devices and standard I/O Interfaces.

and the state of t

SYLLABUS:

- 459

and the

TET.

UNIT-I

Data Representation: Binary Numbers, Fixed Point Representation. Floating Point Representation. Number base conversions, Octal and Hexadecimal Numbers, components, Signed binary numbers, Binary codes **Digital Logic Circuits-I:** Basic Logic Functions, Logic gates, universal logic gates, Minimization of Logic expressions. K-Map Simplification.

UNIT-II

Digital Logic Circuits-II: Sequential Circuits, Flip-Flops, Binary counters, Registers, Shift Registers.

Basic Structure of Computers: Computer Types, Functional units, Basic operational concepts, Bus structures, Software, Performance, multiprocessors and multi computers.

UNIT-III

Computer Arithmetic: Addition and Subtraction of Signed Numbers, Design of Fast Adders, Multiplication of Positive Numbers, Signed-operand Multiplication, Floating-Point Numbers and Operations **Processor Organization:** Fundamental Concepts, Execution of a Complete Instruction, Multiple-Bus Organization.

UNIT-IV

The Memory Organization: Basic Concepts, Semiconductor RAM Memories, Read-Only Memories, Speed, Size and Cost, Cache Memories, Performance Considerations, Virtual Memories, Memory Management Requirements, Secondary Storage

UNIT-V

Input / Output Organization: Accessing I/O Devices, Interrupts, Processor Examples, Direct Memory Access, Buses, Interface Circuits, Standard I/O Interfaces

TEXTBOOKS

- 1. Computer Organization, Carl Hamacher, Zvonko Vranesic, Safwat Zaky, 6thedition, McGraw Hill
- 2. DigitalDesign,6thEdition, M.Morris Mano, Pearson Education.
- 3. Computer Organization and Architecture, William Stallings, 11th Edition, Pearson.

REFERENCEBOOKS

- 1. Computer Systems Architecture, M.Moris Mano, 3rdEdition, Pearson
- 2. Computer Organization and Design, DavidA.Paterson, JohnL. Hennessy, Elsevier
- 3. FundamentalsofLogicDesign,Roth,5thEdition, Thomson

ONLINELEARNINGRESOURCES:

1. https://nptel.ac.in/courses/106/103/106103068/

III B.TECH II SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
II SEMESTER	3		∵ ⊈:	30	70	100	3
SUBCODE: B23CSO2A	F	PRI	NCI		ATABASE M SYSTEMS pen Elective II	IANAGE	MENT

COURSE OBJECTIVES:

The main objectives of the course is to

- Introduce database management systems and to give a good formal foundation on the relational model of data and usage of Relational Algebra
- Introduce the concepts of basic SQL as a universal Database language
- Demonstrate the principles behind systematic database design approaches by covering conceptual design, logical design through normalization
- Provide an overview of physical design of a database system, by discussing Database indexing techniques and storage techniques

COURSE OUTCOMES:

At the end of the course, the students will be able to:

CO1: Utilize various fundamentals of DBMS.

CO2: Apply different relational database using SQL.

CO3: Develop Queries in RDBMS.

CO4: Analyze different levels of normal forms and normalization.

CO5: Analyze various transaction properties and indexing techniques

SYLLABUS

UNIT-I

Introduction: Database system, Characteristics (Database Vs File System), Database Users, Brief introduction of different Data Models; Concepts of Schema, Instance and data independence; Three tier schema architecture for data independence; Database system structure, environment, Centralized and Client Server architecture for the database. Entity Relationship Model: Introduction, Representation of entities, attributes, entity set, relationship, relationship set, constraints, sub classes, super class, inheritance, specialization, generalization using ER Diagrams.

UNIT-II

Relational Model: Introduction to relational model, concepts of domain, attribute, tuple, relation, important ceofnull values, constraints(Domain, Keyconstraints,integrityconstraints)andtheirimportance,Relational Algebra, Relational Calculus. BASICSQL: Simple Database schema, data types, table definitions (create,alter), different DML operations(insert, delete, update).

UNIT-III

SQL:BasicSQLquerying(selectandproject)usingwhereclause, arithmetic & logical operations. Creating tables with relationship, implementation of key and integrity constraints, nested queries, sub queries, grouping, aggregation, ordering, implementation of different types of joins, view(updatable and non-updatable), relational set operations.

UNIT-IV

Schema Refinement (Normalization):Purpose of Normalization or schema refinement, concept of functional dependency, normal forms based on functional dependency Lossless join and dependency preserving decomposition, (1NF,2NFand3NF), concept of surrogate key, Boyce- Codd Normal form (BCNF),MVD, Fourth normal form (4NF), Fifth Normal Form (5NF).

UNIT-V

Transaction Concept: Transaction State, ACID properties, Concurrent Executions, Serializability, Recoverability, lock based, time stamp based, optimistic, concurrency protocols, Deadlocks, Failure Classification, Storage, Recovery and Atomicity, Recovery algorithm.

TEXT BOOKS:

- 1) DatabaseManagementSystems, 3rdedition, Raghurama Krishnan, Johannes Gehrke, TMH (For Chapters 2, 3, 4)
- 2) Database System Concepts,5thedition, Silberschatz, Korth, Sudarsan,TMH (For Chapter 1 and Chapter 5)

REFERENCE BOOKS:

- 1) IntroductiontoDatabaseSystems,8thedition, CJDate, Pearson.
- 2) DatabaseManagementSystem,6thedition, RamezElmasri, Shamkant B.Navathe, Pearson
- 3) Database Principles Fundamentals of Design Implementation and Management, Corlos Coronel, Steven Morris, Peter Robb, Cengage Learning.

Web-Resources

- 1) https://nptel.ac.in/courses/106/105/106105175/
- 2) https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01275806667282022456 shared/overview

B.TECH SEMESTER	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
SEMESTER	3	1		30	70	100	3
SUBCODE: B23CSO3A			PR	OGRAMM	ECT ORIEN IING THRO Ppen Elective III	OUGH JA	VA

COURSE OBJECTIVES:

The learning objectives of this course are to:

- Identify Java language components and how they work together in applications
- Learn the fundamentals of object-oriented programming in Java, including defining classes, invoking methods, using class libraries.
- Learn how to extend Java classes with in heritance and dynamic binding and how to use exception handling in Java applications
- Understand how to design applications with threads in Java
- Understand how to use Java APIs for program development

COURSE OUTCOMES

At the end of the Course/Subject, the students will be able to:

CO1: Realize Java Concepts

CO2: Make use of the OOP's concepts in solving real world problems.

CO3: Apply the concept of Arrays and Implement a solution using Inheritance for a given problem.

CO4: Realize packages and Exception handling concepts CO5: Design GUI Applications with JAVAFX Scene Builder

SYLLABUS

UNIT-I

Object Oriented Programming: Basic concepts, Principles, Program Structure in Java: Introduction, Writing Simple Java Programs, Elements or Tokens in Java Programs, Java Statements, Command Line Arguments.

Data Types, Variables, and Operators :Introduction, Data Types in Java, Declaration of Variables, Data Types, Type Casting, Scope of Variable Identifier, Formatted Output with print f () Method. **Introduction to Operators**, Precedence and Associativity of Operators, Assignment Operator (=), Basic Arithmetic Operators, Increment (++) and Decrement (--) Operators, Boolean Logical Operators, Bitwise Logical Operators.

Control Statements: Introduction, if Expression, Nested if Expressions, ifelse Expressions, Ternary Operator?:, Switch Statement, Iteration Statements, while Expression, do-while Loop, for Loop, Nested for Loop, For- Each for

Loop, Break Statement, Continue Statement.

UNIT-II

Classes and Objects: Introduction, Class Declaration and Modifiers, Class Members, Declaration of Class Objects, Assigning One Object to Another, Access Control for Class Members, Accessing Private Members of Class, Constructor Methods for Class, Overloaded Constructor Methods.

Methods: Introduction, Defining Methods, Overloaded Methods, Overloaded Constructor Methods, Class Objects as Parameters in Methods.

UNIT-III

Arrays: Introduction, Declaration and Initialization of Arrays, Storage of Array in Computer Memory, Accessing Elements of Arrays, Operations on Array Elements, Assigning Array to Another Array, Dynamic Change of Array Size, Sorting of Array

Inheritance: Introduction, Process of Inheritance, Types of Inheritances, Universal Super Class-Object Class, Access Control and Inheritance, Multilevel Inheritance, Method Overriding.

Interfaces: Introduction, Declaration of Interface, Implementation of Interface, Multiple Interfaces, Nested Interfaces, Inheritance of Interfaces, Default Methods in Interfaces.

UNIT-IV

Packages and Java Library: Introduction, Defining Package, Importing Packages and Classes into Programs, Path and Class Path, Access Control, Packages in Java SE, Java. lang Package and its Classes, Class Object, Enumeration, class Math, Formatter Class, Random Class, Time Package.

Exception Handling: Introduction, Hierarchy of Standard Exception Classes, Keywords throws and throw, try, catch, and finally Blocks, Multiple Catch Clauses, Unchecked Exceptions, Checked Exceptions.

Java I/O and File: JavaI/OAPI, standard I/O streams, types, Byte streams, Character streams, Scanner class, Files in Java(Text Book 2)

UNIT-V

String Handling in Java: Introduction, Interface Char Sequence, Class String, Methods for Extracting Characters from Strings, Comparison, Modifying, Searching; Class String Buffer.

Multithreaded Programming: Introduction, Need for Multiple Threads Multithreaded Programming for Multi-core Processor, Thread Class, Deadlock and Race Situations, Inter-thread Communication - Suspending, Resuming, and Stopping of Threads.

Java Database Connectivity: Introduction, JDBC Architecture, Installing My SQL and My SQL Connector/J, JDBC Environment Setup, Establishing JDBC Database Connections, Result Set Interface (Text Book 3)

TEXTBOOKS:

- 1) JAVA one stepahead, Anitha Seth, B.L. Juneja, Oxford.
- 2) Joy with JAVA, Fundamentals of Object Oriented Programming, Debas is Samanta, Monalisa Sarma, Cambridge, 2023.
- 3) JAVA9forProgrammers,PaulDeitel, HarveyDeitel,4thEdition, Pearson.

REFERENCESBOOKS:

- 1) The complete Reference Java, 11th edition, Herbert Schildt, TMH
- 2) Introduction to Java programming,7thEdition, YDaniel Liang, Pearson

ONLINERESOURCES:

B.TECH	L	Т	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
SEMESTER	3	-		30	70	100	3
SUBCODE: B23CS04A	PI	RIN	CIP		FTWARE I en Elective -IV	ENGINE	ERING

COURSE OBJECTIVES:

The objectives of this course are to introduce

- Software life cycle models, Soft ware requirements and SRS document.
- Project Planning, quality control and ensuring good quality software.
- Software Testing strategies, use of CASE tools, Implementation issues, validation & verification procedures.

COURSE OUTCOMES

At the end of the Course/Subject, the students will be able to:

- CO1: Identify the suitable Software Life cycle models in Software Engineering
- **CO2:** Analyze the software management and requirements specifications of the SRS Documents
- CO3: Analyze various design and Development solutions for Software Project
- **CO4:** Compare and assess Various Testing and Quality management techniques
- CO5: Analyze the concepts of CASE and software maintenance concepts

SYLLABUS

UNIT-I

Introduction: Evolution, Software development projects, Exploratory style of software developments, Emergence of software engineering,

Software Life Cycle Models: Basic concepts, Waterfall model and its extensions, Rapid application development, Agile development model, Spiral model.

UNIT-II

Software Project Management: Software project management complexities, Responsibilities of a software project manager, Metrics for project size estimation, Project estimation techniques.

Requirements Analysis And Specification: Requirements gathering and analysis, Software Requirements Specification (SRS), Formal system specification, Axiomatic specification, Algebraic specification, Executable specification.

UNIT-III

Software Design: Overview of the design process, How to characterize a good software design? Layered arrangement of modules, Cohesion and Coupling.

Approaches to software design.

Agility: Agility and the Cost of Change, Agile Process, Extreme Programming (XP), Other Agile Process Models, Tool Set for the Agile Process (Text Book 2) Function Oriented Software Design: Overview of SA/SD methodology, Structured analysis, Developing the DFD model of a system,

User Interface Design: Characteristics of a good user interface, Basic concepts, Types of user interfaces, Fundamentals of component-based GUI development,

and user interface design methodology.

UNIT-IV

Coding And Testing: Coding, Code review, Software documentation, Testing, Black-box testing, White-Box testing, Debugging.

Software Reliability And Quality Management: Software reliability. Statistical testing, Software quality, Software quality management system,

UNIT-V

Computer-Aided Software Engineering (Case): CASE and its scope, CASE environment, CASE support in the software lifecycle, other characteristics of CASE tools,

Software Maintenance: Characteristics of software maintenance, Software

reverse engineering, Software maintenance process models.

Software Reuse: reuse- definition, introduction, reason behind no reuse so far, Basic issues in any reuse program, A reuse approach, and Reuse at organization level.

TEXTBOOKS:

- 1. Fundamentals of Software Engineering, RajibMall, 5thEdition,PHI.
- 2. Software Engineering A practitioner's Approach, RogerS. Pressman, 9th Edition, Mc-Graw Hill International Edition.

REFERENCEBOOKS:

- 1. Software Engineering, Ian So mmerville, 10th Edition, Pearson.
- 2. Software Engineering, Principles and Practices, Deepak Jain, Oxford University Press.

e-Resources:

1) https://nptel.ac.in/courses/106/105/106105182/

- 2) https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01260589506387148827_shared/overview
- 3) https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01 3382690411003904735 shared/overview

B.TECH	L	T	P	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	CREDITS
SEMESTER	3	-	-	30	70	100	. 3
SUBCODE: B23CS52		1.0			UTER NETW Open Elective -IV		

COURSE OBJECTIVES

- To provide insight about networks, topologies, and the key concepts.
- To gain comprehensive knowledge about the layered communication architectures (OSI and TCP/IP) and its functionalities.
- To understand the principles, key protocols, design issues, and significance of each layers in ISO and TCP/IP.
- To know the basic concepts of network services and various network applications.

COURSE OUTCOMES: At the end of the course students will be able to

- **CO1:** Apply different network models & communication techniques, methods and protocol standards
- CO2: Examine different transmission media for transferring error free data
- CO3: Compare and Classify medium access control protocols Ethernet protocols
- CO4: Examine the Network Layer Design Issues and internet protocols (IPV4 & IPV6).
- CO5: Reflect application layer services and client server protocols working with the client server paradigms

SYLLABUS

UNIT-I

Introduction: Network Types, LAN, MAN, WAN, Network Topologies Reference models-The OSI Reference Model- the TCP/IP Reference Model - A Comparison of the OSI and TCP/IP Reference Models,

Physical Layer –Introduction to Guided Media- Twisted-pair cable, Coaxial cable and Fiber optic cable and introduction about unguided media.

UNIT II

Data link layer: Design issues, Framing: fixed size framing, variable size framing, flow control, error control, error detection and correction codes, CRC, Checksum: idea, one's complement internet checksum, services provided to Network Layer, Elementary Data Link Layer protocols: simplex protocol, Simplex stop and wait, Simplex protocol for Noisy Channel.

UNIT-III

ware promedy theorem to the

Media Access Control: Random Access: ALOHA, Carrier sense multiple access (CSMA), CSMA with Collision Detection, CSMA with Collision Avoidance, Controlled Access: Reservation, Polling, Token Passing,

Wired LANs: Ethernet, Ethernet Protocol, Standard Ethernet, Fast Ethernet(100 Mbps), Gigabit Ethernet, 10 Gigabit Ethernet.

UNIT-IV

The Network Layer Design Issues – Store and Forward Packet Switching-Services Provided to the Transport layer- Implementation of Connectionless Service-Implementation of Connection Oriented Service- Comparison of Virtual Circuit and Datagram Networks,

Routing Algorithms-The Optimality principle-Shortest path, Flooding, Distance vector, Link state, Traffic Control Algorithm-Leaky bucket & Token bucket.

Internet Working: How networks differ- How networks can be connected- Tunnelling, internetwork routing-, Fragmentation, network layer in the internet – IP protocols-IP Version 4 protocol-IPV4 Header Format, IP addresses, The main IPV6 header, Comparison of IPV4 & IPV6.

UNIT-V

The Transport Layer: Transport layer protocols: Introduction-services- port number-User data gram protocol-User datagram-UDP services-UDP applications-Transmission control protocol: TCP services- TCP features- Segment

Application Layer — World Wide Web: HTTP, Electronic mail-Architecture- web based mail- email security- TELENET-local versus remote Logging-Domain Name System.

TEXT BOOKS:

- 1. Computer Networksm, Andrew S Tanenbaum, Fifth Edition. Pearson Education/PHI
- 2. Data Communications and Networks, Behrouz A. Forouzan, Fifth Edition TMH.

REFERENCES BOOKS:

- 1. Data Communications and Networks- Achut S Godbole, AtulKahate
- 2. Computer Networks, Mayank Dave, CENGAGE

SUBCODE:	INT	RO	DU	& MACH	ARTIFICIAI IINE LEARN en Elective-V	INTELI	LIGENCE
SEMESTER	3	-	_	MARKS 30	MARKS 70	MARKS 100	CKEDIIS
B.TECH	L	T	P	INTERNAL	EXTERNAL	TOTAL	CREDITS

COURSE OBJECTIVES:

- 1) To understand the basic concepts of artificial intelligence, neural networks and genetic algorithms.
- 2) To understand the principles of knowledge representation and reasoning.
- 3) To gain knowledge about Bayesian and computational learning and machine learning.
- 4) To explore various machine learning techniques.
- 5) To understand the machine learning analytics and deep learning techniques.

COURSE OUTCOMES:

At the end of the course students will be able to

- CO1: Discuss basic concepts of artificial intelligence, neural networks and genetic algorithms.
- CO2: Apply the principles of knowledge representation and reasoning.
- CO3: Learn about bayesian and computational learning and machine learning.
- CO4: Utilize various machine learning techniques.
- CO5: Apply the machine learning analytics and deep learning techniques

SYLLABUS

UNIT-I

Introduction: Definition of Artificial Intelligence, Evolution, Need, and applications in real world. Intelligent Agents, Agents and environments; Good Behaviour-The concept of rationality, the nature of environments, structure of agents.

Neural Networks and Genetic Algorithms: Neural network representation, problems, perceptrons, multilayer networks and back propagation algorithms, Genetic algorithms.

UNIT-II

Knowledge-Representation and Reasoning: Logical Agents: Knowledge based agents, the Wumpus world, logic. Patterns in Propositional Logic, Inference in First-Order Logic-Propositional vs first order inference, unification and lifting

DO MHIM KRISHOR PROSON

UNIT-III

Bayesian and Computational Learning: Bayes theorem, concept learning, maximum likelihood, minimum description length principle, Gibbs Algorithm, Naïve Bayes Classifier, Instance Based Learning-K-Nearest neighbour learning

Introduction to Machine Learning (ML): Definition, Evolution, Need, applications of ML in industry and real world, classification; differences between supervised and unsupervised learning paradigms.

UNIT-IV

Basic Methods in Supervised Learning: Distance-based methods, Nearest-Neighbors, Decision Trees, Support Vector Machines, Nonlinearity and Kernel Methods.

Unsupervised Learning: Clustering, K-means, Dimensionality Reduction, PCA and kernel.

UNIT-V

Machine Learning Algorithm Analytics: Evaluating Machine Learning algorithms, Model, Selection, Ensemble Methods (Boosting, Bagging, and Random Forests).

Modelling Sequence/Time-Series Data and Deep Learning: Deep generative models, Deep Boltzmann Machines, Deep auto-encoders, Applications of Deep Networks.

TEXT BOOKS:

- 1) Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 2/e, Pearson Education, 2010.
- 2) Tom M. Mitchell, Machine Learning, McGraw Hill, 2013.
- 3) EthemAlpaydin, Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press, 2004.

REFERENCE BOOKS:

- 1) Elaine Rich, Kevin Knight and Shivashankar B. Nair, Artificial Intelligence, 3/e, McGraw Hill Education, 2008.
- 2) Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems, PHI Learning, 2012.
- 3) T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning, 1/e, Springer, 2001.
- 4) Bishop, C. M., Pattern Recognition and Machine Learning, Springer, 2006.
- 5) M. NarasimhaMurty, Introduction to Pattern Recognition and Machine Learning, World Scientific Publishing Company, 2015.

Dr. MH. M Krishna Prasad TNTUK Nominee